mikepaul-LuaJIT/src/lj_record.c

2536 lines
81 KiB
C

/*
** Trace recorder (bytecode -> SSA IR).
** Copyright (C) 2005-2010 Mike Pall. See Copyright Notice in luajit.h
*/
#define lj_record_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT
#include "lj_gc.h"
#include "lj_err.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_state.h"
#include "lj_frame.h"
#include "lj_bc.h"
#include "lj_ff.h"
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_iropt.h"
#include "lj_trace.h"
#include "lj_record.h"
#include "lj_snap.h"
#include "lj_asm.h"
#include "lj_dispatch.h"
#include "lj_vm.h"
/* Some local macros to save typing. Undef'd at the end. */
#define IR(ref) (&J->cur.ir[(ref)])
/* Pass IR on to next optimization in chain (FOLD). */
#define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
/* Emit raw IR without passing through optimizations. */
#define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
/* Context for recording an indexed load/store. */
typedef struct RecordIndex {
TValue tabv; /* Runtime value of table (or indexed object). */
TValue keyv; /* Runtime value of key. */
TValue valv; /* Runtime value of stored value. */
TValue mobjv; /* Runtime value of metamethod object. */
GCtab *mtv; /* Runtime value of metatable object. */
cTValue *oldv; /* Runtime value of previously stored value. */
TRef tab; /* Table (or indexed object) reference. */
TRef key; /* Key reference. */
TRef val; /* Value reference for a store or 0 for a load. */
TRef mt; /* Metatable reference. */
TRef mobj; /* Metamethod object reference. */
int idxchain; /* Index indirections left or 0 for raw lookup. */
} RecordIndex;
/* Forward declarations. */
static int rec_mm_lookup(jit_State *J, RecordIndex *ix, MMS mm);
static TRef rec_idx(jit_State *J, RecordIndex *ix);
/* -- Sanity checks ------------------------------------------------------- */
#ifdef LUA_USE_ASSERT
/* Sanity check the whole IR -- sloooow. */
static void rec_check_ir(jit_State *J)
{
IRRef i, nins = J->cur.nins, nk = J->cur.nk;
lua_assert(nk <= REF_BIAS && nins >= REF_BIAS && nins < 65536);
for (i = nins-1; i >= nk; i--) {
IRIns *ir = IR(i);
uint32_t mode = lj_ir_mode[ir->o];
IRRef op1 = ir->op1;
IRRef op2 = ir->op2;
switch (irm_op1(mode)) {
case IRMnone: lua_assert(op1 == 0); break;
case IRMref: lua_assert(op1 >= nk);
lua_assert(i >= REF_BIAS ? op1 < i : op1 > i); break;
case IRMlit: break;
case IRMcst: lua_assert(i < REF_BIAS); continue;
}
switch (irm_op2(mode)) {
case IRMnone: lua_assert(op2 == 0); break;
case IRMref: lua_assert(op2 >= nk);
lua_assert(i >= REF_BIAS ? op2 < i : op2 > i); break;
case IRMlit: break;
case IRMcst: lua_assert(0); break;
}
if (ir->prev) {
lua_assert(ir->prev >= nk);
lua_assert(i >= REF_BIAS ? ir->prev < i : ir->prev > i);
lua_assert(IR(ir->prev)->o == ir->o);
}
}
}
/* Compare stack slots and frames of the recorder and the VM. */
static void rec_check_slots(jit_State *J)
{
BCReg s, nslots = J->baseslot + J->maxslot;
int32_t depth = 0;
cTValue *base = J->L->base - J->baseslot;
lua_assert(J->baseslot >= 1 && J->baseslot < LJ_MAX_JSLOTS);
lua_assert(J->baseslot == 1 || (J->slot[J->baseslot-1] & TREF_FRAME));
lua_assert(nslots < LJ_MAX_JSLOTS);
for (s = 0; s < nslots; s++) {
TRef tr = J->slot[s];
if (tr) {
cTValue *tv = &base[s];
IRRef ref = tref_ref(tr);
IRIns *ir;
lua_assert(ref >= J->cur.nk && ref < J->cur.nins);
ir = IR(ref);
lua_assert(irt_t(ir->t) == tref_t(tr));
if (s == 0) {
lua_assert(tref_isfunc(tr));
} else if ((tr & TREF_FRAME)) {
GCfunc *fn = gco2func(frame_gc(tv));
BCReg delta = (BCReg)(tv - frame_prev(tv));
lua_assert(tref_isfunc(tr));
if (tref_isk(tr)) lua_assert(fn == ir_kfunc(ir));
lua_assert(s > delta ? (J->slot[s-delta] & TREF_FRAME) : (s == delta));
depth++;
} else if ((tr & TREF_CONT)) {
lua_assert(ir_kptr(ir) == gcrefp(tv->gcr, void));
lua_assert((J->slot[s+1] & TREF_FRAME));
depth++;
} else {
if (tvisnum(tv))
lua_assert(tref_isnumber(tr)); /* Could be IRT_INT etc., too. */
else
lua_assert(itype2irt(tv) == tref_type(tr));
if (tref_isk(tr)) { /* Compare constants. */
TValue tvk;
lj_ir_kvalue(J->L, &tvk, ir);
lua_assert(lj_obj_equal(tv, &tvk));
}
}
}
}
lua_assert(J->framedepth == depth);
}
#endif
/* -- Type handling and specialization ------------------------------------ */
/* Note: these functions return tagged references (TRef). */
/* Specialize a slot to a specific type. Note: slot can be negative! */
static TRef sloadt(jit_State *J, int32_t slot, IRType t, int mode)
{
/* Caller may set IRT_GUARD in t. */
TRef ref = emitir_raw(IRT(IR_SLOAD, t), (int32_t)J->baseslot+slot, mode);
J->base[slot] = ref;
return ref;
}
/* Specialize a slot to the runtime type. Note: slot can be negative! */
static TRef sload(jit_State *J, int32_t slot)
{
IRType t = itype2irt(&J->L->base[slot]);
TRef ref = emitir_raw(IRTG(IR_SLOAD, t), (int32_t)J->baseslot+slot,
IRSLOAD_TYPECHECK);
if (irtype_ispri(t)) ref = TREF_PRI(t); /* Canonicalize primitive refs. */
J->base[slot] = ref;
return ref;
}
/* Get TRef from slot. Load slot and specialize if not done already. */
#define getslot(J, s) (J->base[(s)] ? J->base[(s)] : sload(J, (int32_t)(s)))
/* Get TRef for current function. */
static TRef getcurrf(jit_State *J)
{
if (J->base[-1])
return J->base[-1];
lua_assert(J->baseslot == 1);
return sloadt(J, -1, IRT_FUNC, IRSLOAD_READONLY);
}
/* Compare for raw object equality.
** Returns 0 if the objects are the same.
** Returns 1 if they are different, but the same type.
** Returns 2 for two different types.
** Comparisons between primitives always return 1 -- no caller cares about it.
*/
static int rec_objcmp(jit_State *J, TRef a, TRef b, cTValue *av, cTValue *bv)
{
int diff = !lj_obj_equal(av, bv);
if (!tref_isk2(a, b)) { /* Shortcut, also handles primitives. */
IRType ta = tref_isinteger(a) ? IRT_INT : tref_type(a);
IRType tb = tref_isinteger(b) ? IRT_INT : tref_type(b);
if (ta != tb) {
/* Widen mixed number/int comparisons to number/number comparison. */
if (ta == IRT_INT && tb == IRT_NUM) {
a = emitir(IRTN(IR_TONUM), a, 0);
ta = IRT_NUM;
} else if (ta == IRT_NUM && tb == IRT_INT) {
b = emitir(IRTN(IR_TONUM), b, 0);
} else {
return 2; /* Two different types are never equal. */
}
}
emitir(IRTG(diff ? IR_NE : IR_EQ, ta), a, b);
}
return diff;
}
/* -- Record loop ops ----------------------------------------------------- */
/* Loop event. */
typedef enum {
LOOPEV_LEAVE, /* Loop is left or not entered. */
LOOPEV_ENTER /* Loop is entered. */
} LoopEvent;
/* Canonicalize slots: convert integers to numbers. */
static void canonicalize_slots(jit_State *J)
{
BCReg s;
for (s = J->baseslot+J->maxslot-1; s >= 1; s--) {
TRef tr = J->slot[s];
if (tref_isinteger(tr)) {
IRIns *ir = IR(tref_ref(tr));
if (!(ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_READONLY)))
J->slot[s] = emitir(IRTN(IR_TONUM), tr, 0);
}
}
}
/* Stop recording. */
static void rec_stop(jit_State *J, TraceNo lnk)
{
lj_trace_end(J);
J->cur.link = (uint16_t)lnk;
/* Looping back at the same stack level? */
if (lnk == J->cur.traceno && J->framedepth + J->retdepth == 0) {
if ((J->flags & JIT_F_OPT_LOOP)) /* Shall we try to create a loop? */
goto nocanon; /* Do not canonicalize or we lose the narrowing. */
if (J->cur.root) /* Otherwise ensure we always link to the root trace. */
J->cur.link = J->cur.root;
}
canonicalize_slots(J);
nocanon:
/* Note: all loop ops must set J->pc to the following instruction! */
lj_snap_add(J); /* Add loop snapshot. */
J->needsnap = 0;
J->mergesnap = 1; /* In case recording continues. */
}
/* Search bytecode backwards for a int/num constant slot initializer. */
static TRef find_kinit(jit_State *J, const BCIns *endpc, BCReg slot, IRType t)
{
/* This algorithm is rather simplistic and assumes quite a bit about
** how the bytecode is generated. It works fine for FORI initializers,
** but it won't necessarily work in other cases (e.g. iterator arguments).
** It doesn't do anything fancy, either (like backpropagating MOVs).
*/
const BCIns *pc, *startpc = proto_bc(J->pt);
for (pc = endpc-1; pc > startpc; pc--) {
BCIns ins = *pc;
BCOp op = bc_op(ins);
/* First try to find the last instruction that stores to this slot. */
if (bcmode_a(op) == BCMbase && bc_a(ins) <= slot) {
return 0; /* Multiple results, e.g. from a CALL or KNIL. */
} else if (bcmode_a(op) == BCMdst && bc_a(ins) == slot) {
if (op == BC_KSHORT || op == BC_KNUM) { /* Found const. initializer. */
/* Now try to verify there's no forward jump across it. */
const BCIns *kpc = pc;
for (; pc > startpc; pc--)
if (bc_op(*pc) == BC_JMP) {
const BCIns *target = pc+bc_j(*pc)+1;
if (target > kpc && target <= endpc)
return 0; /* Conditional assignment. */
}
if (op == BC_KSHORT) {
int32_t k = (int32_t)(int16_t)bc_d(ins);
return t == IRT_INT ? lj_ir_kint(J, k) : lj_ir_knum(J, cast_num(k));
} else {
lua_Number n = proto_knum(J->pt, bc_d(ins));
if (t == IRT_INT) {
int32_t k = lj_num2int(n);
if (n == cast_num(k)) /* -0 is ok here. */
return lj_ir_kint(J, k);
return 0; /* Type mismatch. */
} else {
return lj_ir_knum(J, n);
}
}
}
return 0; /* Non-constant initializer. */
}
}
return 0; /* No assignment to this slot found? */
}
/* Peek before FORI to find a const initializer. Otherwise load from slot. */
static TRef fori_arg(jit_State *J, const BCIns *fori, BCReg slot, IRType t)
{
TRef tr = J->base[slot];
if (!tr) {
tr = find_kinit(J, fori, slot, t);
if (!tr) {
if (t == IRT_INT)
t |= IRT_GUARD;
tr = sloadt(J, (int32_t)slot, t, IRSLOAD_READONLY|IRSLOAD_INHERIT);
}
}
return tr;
}
/* In-place coercion of FORI arguments. */
static lua_Number for_coerce(jit_State *J, TValue *o)
{
if (!tvisnum(o) && !(tvisstr(o) && lj_str_tonum(strV(o), o)))
lj_trace_err(J, LJ_TRERR_BADTYPE);
return numV(o);
}
/* Simulate the runtime behavior of the FOR loop iterator.
** It's important to exactly reproduce the semantics of the interpreter.
*/
static LoopEvent for_iter(jit_State *J, IROp *op, BCReg ra, int isforl)
{
TValue *forbase = &J->L->base[ra];
lua_Number stopv = for_coerce(J, &forbase[FORL_STOP]);
lua_Number idxv = for_coerce(J, &forbase[FORL_IDX]);
lua_Number stepv = for_coerce(J, &forbase[FORL_STEP]);
if (isforl)
idxv += stepv;
if ((int32_t)forbase[FORL_STEP].u32.hi >= 0) {
if (idxv <= stopv) { *op = IR_LE; return LOOPEV_ENTER; }
*op = IR_GT; return LOOPEV_LEAVE;
} else {
if (stopv <= idxv) { *op = IR_GE; return LOOPEV_ENTER; }
*op = IR_LT; return LOOPEV_LEAVE;
}
}
/* Record FORL/JFORL or FORI/JFORI. */
static LoopEvent rec_for(jit_State *J, const BCIns *fori, int isforl)
{
BCReg ra = bc_a(*fori);
IROp op;
LoopEvent ev = for_iter(J, &op, ra, isforl);
TRef *tr = &J->base[ra];
TRef idx, stop;
IRType t;
if (isforl) { /* Handle FORL/JFORL opcodes. */
TRef step;
idx = tr[FORL_IDX];
if (tref_ref(idx) == J->scev.idx) {
t = J->scev.t.irt;
stop = J->scev.stop;
step = J->scev.step;
} else {
if (!idx) idx = sloadt(J, (int32_t)(ra+FORL_IDX), IRT_NUM, 0);
t = tref_type(idx);
stop = fori_arg(J, fori, ra+FORL_STOP, t);
step = fori_arg(J, fori, ra+FORL_STEP, t);
}
tr[FORL_IDX] = idx = emitir(IRT(IR_ADD, t), idx, step);
} else { /* Handle FORI/JFORI opcodes. */
BCReg i;
t = IRT_NUM;
for (i = FORL_IDX; i <= FORL_STEP; i++) {
lua_assert(J->base[ra+i] != 0); /* Assumes the slots are already set. */
tr[i] = lj_ir_tonum(J, J->base[ra+i]);
}
idx = tr[FORL_IDX];
stop = tr[FORL_STOP];
if (!tref_isk(tr[FORL_STEP])) /* Non-const step: need direction guard. */
emitir(IRTG(((op-IR_LT)>>1)+IR_LT, IRT_NUM),
tr[FORL_STEP], lj_ir_knum_zero(J));
}
tr[FORL_EXT] = idx;
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra+FORL_EXT+1;
J->pc = fori+1;
} else {
J->maxslot = ra;
J->pc = fori+bc_j(*fori)+1;
}
lj_snap_add(J);
emitir(IRTG(op, t), idx, stop);
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra;
J->pc = fori+bc_j(*fori)+1;
} else {
J->maxslot = ra+FORL_EXT+1;
J->pc = fori+1;
}
J->needsnap = 1;
return ev;
}
/* Record ITERL/JITERL. */
static LoopEvent rec_iterl(jit_State *J, const BCIns iterins)
{
BCReg ra = bc_a(iterins);
lua_assert(J->base[ra] != 0);
if (!tref_isnil(J->base[ra])) { /* Looping back? */
J->base[ra-1] = J->base[ra]; /* Copy result of ITERC to control var. */
J->maxslot = ra-1+bc_b(J->pc[-1]);
J->pc += bc_j(iterins)+1;
return LOOPEV_ENTER;
} else {
J->maxslot = ra-3;
J->pc++;
return LOOPEV_LEAVE;
}
}
/* Record LOOP/JLOOP. Now, that was easy. */
static LoopEvent rec_loop(jit_State *J, BCReg ra)
{
J->maxslot = ra;
J->pc++;
return LOOPEV_ENTER;
}
/* Check if a loop repeatedly failed to trace because it didn't loop back. */
static int innerloopleft(jit_State *J, const BCIns *pc)
{
ptrdiff_t i;
for (i = 0; i < PENALTY_SLOTS; i++)
if (mref(J->penalty[i].pc, const BCIns) == pc) {
if (J->penalty[i].reason == LJ_TRERR_LLEAVE &&
J->penalty[i].val >= 2*PENALTY_MIN)
return 1;
break;
}
return 0;
}
/* Handle the case when an interpreted loop op is hit. */
static void rec_loop_interp(jit_State *J, const BCIns *pc, LoopEvent ev)
{
if (J->parent == 0) {
if (pc == J->startpc && J->framedepth + J->retdepth == 0) {
/* Same loop? */
if (ev == LOOPEV_LEAVE) /* Must loop back to form a root trace. */
lj_trace_err(J, LJ_TRERR_LLEAVE);
rec_stop(J, J->cur.traceno); /* Root trace forms a loop. */
} else if (ev != LOOPEV_LEAVE) { /* Entering inner loop? */
/* It's usually better to abort here and wait until the inner loop
** is traced. But if the inner loop repeatedly didn't loop back,
** this indicates a low trip count. In this case try unrolling
** an inner loop even in a root trace. But it's better to be a bit
** more conservative here and only do it for very short loops.
*/
if (!innerloopleft(J, pc))
lj_trace_err(J, LJ_TRERR_LINNER); /* Root trace hit an inner loop. */
if ((J->loopref && J->cur.nins - J->loopref > 8) || --J->loopunroll < 0)
lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */
J->loopref = J->cur.nins;
}
} else if (ev != LOOPEV_LEAVE) { /* Side trace enters an inner loop. */
J->loopref = J->cur.nins;
if (--J->loopunroll < 0)
lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */
} /* Side trace continues across a loop that's left or not entered. */
}
/* Handle the case when an already compiled loop op is hit. */
static void rec_loop_jit(jit_State *J, TraceNo lnk, LoopEvent ev)
{
if (J->parent == 0) { /* Root trace hit an inner loop. */
/* Better let the inner loop spawn a side trace back here. */
lj_trace_err(J, LJ_TRERR_LINNER);
} else if (ev != LOOPEV_LEAVE) { /* Side trace enters a compiled loop. */
J->instunroll = 0; /* Cannot continue across a compiled loop op. */
if (J->pc == J->startpc && J->framedepth + J->retdepth == 0)
lnk = J->cur.traceno; /* Can form an extra loop. */
rec_stop(J, lnk); /* Link to the loop. */
} /* Side trace continues across a loop that's left or not entered. */
}
/* -- Record calls and returns -------------------------------------------- */
/* Record call setup. */
static void rec_call_setup(jit_State *J, BCReg func, ptrdiff_t nargs)
{
RecordIndex ix;
TValue *functv = &J->L->base[func];
TRef trfunc, *fbase = &J->base[func];
ptrdiff_t i;
for (i = 0; i <= nargs; i++)
getslot(J, func+i); /* Ensure func and all args have a reference. */
if (!tref_isfunc(fbase[0])) { /* Resolve __call metamethod. */
ix.tab = fbase[0];
copyTV(J->L, &ix.tabv, functv);
if (!rec_mm_lookup(J, &ix, MM_call) || !tref_isfunc(ix.mobj))
lj_trace_err(J, LJ_TRERR_NOMM);
for (i = ++nargs; i > 0; i--) /* Shift arguments up. */
fbase[i] = fbase[i-1];
fbase[0] = ix.mobj; /* Replace function. */
functv = &ix.mobjv;
}
/* Specialize to the runtime value of the called function. */
trfunc = lj_ir_kfunc(J, funcV(functv));
emitir(IRTG(IR_EQ, IRT_FUNC), fbase[0], trfunc);
fbase[0] = trfunc | TREF_FRAME;
J->maxslot = (BCReg)nargs;
}
/* Record call. */
static void rec_call(jit_State *J, BCReg func, ptrdiff_t nargs)
{
rec_call_setup(J, func, nargs);
/* Bump frame. */
J->framedepth++;
J->base += func+1;
J->baseslot += func+1;
}
/* Record tail call. */
static void rec_tailcall(jit_State *J, BCReg func, ptrdiff_t nargs)
{
rec_call_setup(J, func, nargs);
/* Move func + args down. */
memmove(&J->base[-1], &J->base[func], sizeof(TRef)*(J->maxslot+1));
/* Note: the new TREF_FRAME is now at J->base[-1] (even for slot #0). */
/* Tailcalls can form a loop, so count towards the loop unroll limit. */
if (++J->tailcalled > J->loopunroll)
lj_trace_err(J, LJ_TRERR_LUNROLL);
}
/* Check unroll limits for down-recursion. */
static int check_downrec_unroll(jit_State *J, GCproto *pt)
{
IRRef ptref;
for (ptref = J->chain[IR_KGC]; ptref; ptref = IR(ptref)->prev)
if (ir_kgc(IR(ptref)) == obj2gco(pt)) {
int count = 0;
IRRef ref;
for (ref = J->chain[IR_RETF]; ref; ref = IR(ref)->prev)
if (IR(ref)->op1 == ptref)
count++;
if (count) {
if (J->pc == J->startpc) {
if (count + J->tailcalled > J->param[JIT_P_recunroll])
return 1;
} else {
lj_trace_err(J, LJ_TRERR_DOWNREC);
}
}
}
return 0;
}
/* Record return. */
static void rec_ret(jit_State *J, BCReg rbase, ptrdiff_t gotresults)
{
TValue *frame = J->L->base - 1;
ptrdiff_t i;
for (i = 0; i < gotresults; i++)
getslot(J, rbase+i); /* Ensure all results have a reference. */
while (frame_ispcall(frame)) { /* Immediately resolve pcall() returns. */
BCReg cbase = (BCReg)frame_delta(frame);
if (--J->framedepth < 0)
lj_trace_err(J, LJ_TRERR_NYIRETL);
lua_assert(J->baseslot > 1);
gotresults++;
rbase += cbase;
J->baseslot -= (BCReg)cbase;
J->base -= cbase;
J->base[--rbase] = TREF_TRUE; /* Prepend true to results. */
frame = frame_prevd(frame);
}
if (frame_islua(frame)) { /* Return to Lua frame. */
BCIns callins = *(frame_pc(frame)-1);
ptrdiff_t nresults = bc_b(callins) ? (ptrdiff_t)bc_b(callins)-1 :gotresults;
BCReg cbase = bc_a(callins);
GCproto *pt = funcproto(frame_func(frame - (cbase+1)));
if (J->framedepth == 0 && J->pt && frame == J->L->base - 1) {
if (check_downrec_unroll(J, pt)) {
J->maxslot = (BCReg)(rbase + nresults);
rec_stop(J, J->cur.traceno); /* Down-recursion. */
return;
}
lj_snap_add(J);
}
for (i = 0; i < nresults; i++) /* Adjust results. */
J->base[i-1] = i < gotresults ? J->base[rbase+i] : TREF_NIL;
J->maxslot = cbase+(BCReg)nresults;
if (J->framedepth > 0) { /* Return to a frame that is part of the trace. */
J->framedepth--;
lua_assert(J->baseslot > cbase+1);
J->baseslot -= cbase+1;
J->base -= cbase+1;
} else if (J->parent == 0 && !bc_isret(bc_op(J->cur.startins))) {
/* Return to lower frame would leave the loop in a root trace. */
lj_trace_err(J, LJ_TRERR_LLEAVE);
} else { /* Return to lower frame. Guard for the target we return to. */
TRef trpt = lj_ir_kgc(J, obj2gco(pt), IRT_PROTO);
TRef trpc = lj_ir_kptr(J, (void *)frame_pc(frame));
emitir(IRTG(IR_RETF, IRT_PTR), trpt, trpc);
J->retdepth++;
J->needsnap = 1;
lua_assert(J->baseslot == 1);
/* Shift result slots up and clear the slots of the new frame below. */
memmove(J->base + cbase, J->base-1, sizeof(TRef)*nresults);
memset(J->base-1, 0, sizeof(TRef)*(cbase+1));
}
} else if (frame_iscont(frame)) { /* Return to continuation frame. */
ASMFunction cont = frame_contf(frame);
BCReg cbase = (BCReg)frame_delta(frame);
if ((J->framedepth -= 2) < 0)
lj_trace_err(J, LJ_TRERR_NYIRETL);
J->baseslot -= (BCReg)cbase;
J->base -= cbase;
J->maxslot = cbase-2;
if (cont == lj_cont_ra) {
/* Copy result to destination slot. */
BCReg dst = bc_a(*(frame_contpc(frame)-1));
J->base[dst] = gotresults ? J->base[cbase+rbase] : TREF_NIL;
if (dst > J->maxslot) J->maxslot = dst+1;
} else if (cont == lj_cont_nop) {
/* Nothing to do here. */
} else if (cont == lj_cont_cat) {
lua_assert(0);
} else {
/* Result type already specialized. */
lua_assert(cont == lj_cont_condf || cont == lj_cont_condt);
}
} else {
lj_trace_err(J, LJ_TRERR_NYIRETL); /* NYI: handle return to C frame. */
}
lua_assert(J->baseslot >= 1);
}
/* -- Metamethod handling ------------------------------------------------- */
/* Prepare to record call to metamethod. */
static BCReg rec_mm_prep(jit_State *J, ASMFunction cont)
{
BCReg s, top = curr_proto(J->L)->framesize;
TRef trcont;
setcont(&J->L->base[top], cont);
#if LJ_64
trcont = lj_ir_kptr(J, (void *)((int64_t)cont - (int64_t)lj_vm_asm_begin));
#else
trcont = lj_ir_kptr(J, (void *)cont);
#endif
J->base[top] = trcont | TREF_CONT;
J->framedepth++;
for (s = J->maxslot; s < top; s++)
J->base[s] = 0; /* Clear frame gap to avoid resurrecting previous refs. */
return top+1;
}
/* Record metamethod lookup. */
static int rec_mm_lookup(jit_State *J, RecordIndex *ix, MMS mm)
{
RecordIndex mix;
GCtab *mt;
if (tref_istab(ix->tab)) {
mt = tabref(tabV(&ix->tabv)->metatable);
mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META);
} else if (tref_isudata(ix->tab)) {
mt = tabref(udataV(&ix->tabv)->metatable);
mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_UDATA_META);
} else {
/* Specialize to base metatable. Must flush mcode in lua_setmetatable(). */
mt = tabref(basemt_obj(J2G(J), &ix->tabv));
if (mt == NULL) {
ix->mt = TREF_NIL;
return 0; /* No metamethod. */
}
ix->mt = mix.tab = lj_ir_ktab(J, mt);
goto nocheck;
}
ix->mt = mt ? mix.tab : TREF_NIL;
emitir(IRTG(mt ? IR_NE : IR_EQ, IRT_TAB), mix.tab, lj_ir_knull(J, IRT_TAB));
nocheck:
if (mt) {
GCstr *mmstr = mmname_str(J2G(J), mm);
cTValue *mo = lj_tab_getstr(mt, mmstr);
if (mo && !tvisnil(mo))
copyTV(J->L, &ix->mobjv, mo);
ix->mtv = mt;
settabV(J->L, &mix.tabv, mt);
setstrV(J->L, &mix.keyv, mmstr);
mix.key = lj_ir_kstr(J, mmstr);
mix.val = 0;
mix.idxchain = 0;
ix->mobj = rec_idx(J, &mix);
return !tref_isnil(ix->mobj); /* 1 if metamethod found, 0 if not. */
}
return 0; /* No metamethod. */
}
/* Record call to arithmetic metamethod (and MM_len). */
static TRef rec_mm_arith(jit_State *J, RecordIndex *ix, MMS mm)
{
/* Set up metamethod call first to save ix->tab and ix->tabv. */
BCReg func = rec_mm_prep(J, lj_cont_ra);
TRef *base = J->base + func;
TValue *basev = J->L->base + func;
base[1] = ix->tab; base[2] = ix->key;
copyTV(J->L, basev+1, &ix->tabv);
copyTV(J->L, basev+2, &ix->keyv);
if (!rec_mm_lookup(J, ix, mm)) { /* Lookup metamethod on 1st operand. */
if (mm != MM_len) {
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, &ix->keyv);
if (rec_mm_lookup(J, ix, mm)) /* Lookup metamethod on 2nd operand. */
goto ok;
}
lj_trace_err(J, LJ_TRERR_NOMM);
}
ok:
base[0] = ix->mobj;
copyTV(J->L, basev+0, &ix->mobjv);
rec_call(J, func, 2);
return 0; /* No result yet. */
}
/* Call a comparison metamethod. */
static void rec_mm_callcomp(jit_State *J, RecordIndex *ix, int op)
{
BCReg func = rec_mm_prep(J, (op&1) ? lj_cont_condf : lj_cont_condt);
TRef *base = J->base + func;
TValue *tv = J->L->base + func;
base[0] = ix->mobj; base[1] = ix->val; base[2] = ix->key;
copyTV(J->L, tv+0, &ix->mobjv);
copyTV(J->L, tv+1, &ix->valv);
copyTV(J->L, tv+2, &ix->keyv);
rec_call(J, func, 2);
}
/* Record call to equality comparison metamethod (for tab and udata only). */
static void rec_mm_equal(jit_State *J, RecordIndex *ix, int op)
{
ix->tab = ix->val;
copyTV(J->L, &ix->tabv, &ix->valv);
if (rec_mm_lookup(J, ix, MM_eq)) { /* Lookup metamethod on 1st operand. */
cTValue *bv;
TRef mo1 = ix->mobj;
TValue mo1v;
copyTV(J->L, &mo1v, &ix->mobjv);
/* Avoid the 2nd lookup and the objcmp if the metatables are equal. */
bv = &ix->keyv;
if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else { /* Lookup metamethod on 2nd operand and compare both. */
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, bv);
if (!rec_mm_lookup(J, ix, MM_eq) ||
rec_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv))
return;
}
rec_mm_callcomp(J, ix, op);
}
}
/* Record call to ordered comparison metamethods (for arbitrary objects). */
static void rec_mm_comp(jit_State *J, RecordIndex *ix, int op)
{
ix->tab = ix->val;
copyTV(J->L, &ix->tabv, &ix->valv);
while (1) {
MMS mm = (op & 2) ? MM_le : MM_lt; /* Try __le + __lt or only __lt. */
if (rec_mm_lookup(J, ix, mm)) { /* Lookup metamethod on 1st operand. */
cTValue *bv;
TRef mo1 = ix->mobj;
TValue mo1v;
copyTV(J->L, &mo1v, &ix->mobjv);
/* Avoid the 2nd lookup and the objcmp if the metatables are equal. */
bv = &ix->keyv;
if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else { /* Lookup metamethod on 2nd operand and compare both. */
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, bv);
if (!rec_mm_lookup(J, ix, mm) ||
rec_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv))
goto nomatch;
}
rec_mm_callcomp(J, ix, op);
return;
}
nomatch:
/* First lookup failed. Retry with __lt and swapped operands. */
if (!(op & 2)) break; /* Already at __lt. Interpreter will throw. */
ix->tab = ix->key; ix->key = ix->val; ix->val = ix->tab;
copyTV(J->L, &ix->tabv, &ix->keyv);
copyTV(J->L, &ix->keyv, &ix->valv);
copyTV(J->L, &ix->valv, &ix->tabv);
op ^= 3;
}
}
/* -- Indexed access ------------------------------------------------------ */
/* Record bounds-check. */
static void rec_idx_abc(jit_State *J, TRef asizeref, TRef ikey, uint32_t asize)
{
/* Try to emit invariant bounds checks. */
if ((J->flags & (JIT_F_OPT_LOOP|JIT_F_OPT_ABC)) ==
(JIT_F_OPT_LOOP|JIT_F_OPT_ABC)) {
IRRef ref = tref_ref(ikey);
IRIns *ir = IR(ref);
int32_t ofs = 0;
IRRef ofsref = 0;
/* Handle constant offsets. */
if (ir->o == IR_ADD && irref_isk(ir->op2)) {
ofsref = ir->op2;
ofs = IR(ofsref)->i;
ref = ir->op1;
ir = IR(ref);
}
/* Got scalar evolution analysis results for this reference? */
if (ref == J->scev.idx) {
int32_t stop;
lua_assert(irt_isint(J->scev.t) && ir->o == IR_SLOAD);
stop = lj_num2int(numV(&(J->L->base - J->baseslot)[ir->op1 + FORL_STOP]));
/* Runtime value for stop of loop is within bounds? */
if ((int64_t)stop + ofs < (int64_t)asize) {
/* Emit invariant bounds check for stop. */
emitir(IRTG(IR_ABC, IRT_PTR), asizeref, ofs == 0 ? J->scev.stop :
emitir(IRTI(IR_ADD), J->scev.stop, ofsref));
/* Emit invariant bounds check for start, if not const or negative. */
if (!(J->scev.dir && J->scev.start &&
(int64_t)IR(J->scev.start)->i + ofs >= 0))
emitir(IRTG(IR_ABC, IRT_PTR), asizeref, ikey);
return;
}
}
}
emitir(IRTGI(IR_ABC), asizeref, ikey); /* Emit regular bounds check. */
}
/* Record indexed key lookup. */
static TRef rec_idx_key(jit_State *J, RecordIndex *ix)
{
TRef key;
GCtab *t = tabV(&ix->tabv);
ix->oldv = lj_tab_get(J->L, t, &ix->keyv); /* Lookup previous value. */
/* Integer keys are looked up in the array part first. */
key = ix->key;
if (tref_isnumber(key)) {
lua_Number n = numV(&ix->keyv);
int32_t k = lj_num2int(n);
lua_assert(tvisnum(&ix->keyv));
/* Potential array key? */
if ((MSize)k < LJ_MAX_ASIZE && n == cast_num(k)) {
TRef asizeref, ikey = key;
if (!tref_isinteger(ikey))
ikey = emitir(IRTGI(IR_TOINT), ikey, IRTOINT_INDEX);
asizeref = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
if ((MSize)k < t->asize) { /* Currently an array key? */
TRef arrayref;
rec_idx_abc(J, asizeref, ikey, t->asize);
arrayref = emitir(IRT(IR_FLOAD, IRT_PTR), ix->tab, IRFL_TAB_ARRAY);
return emitir(IRT(IR_AREF, IRT_PTR), arrayref, ikey);
} else { /* Currently not in array (may be an array extension)? */
emitir(IRTGI(IR_ULE), asizeref, ikey); /* Inv. bounds check. */
if (k == 0 && tref_isk(key))
key = lj_ir_knum_zero(J); /* Canonicalize 0 or +-0.0 to +0.0. */
/* And continue with the hash lookup. */
}
} else if (!tref_isk(key)) {
/* We can rule out const numbers which failed the integerness test
** above. But all other numbers are potential array keys.
*/
if (t->asize == 0) { /* True sparse tables have an empty array part. */
/* Guard that the array part stays empty. */
TRef tmp = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
emitir(IRTGI(IR_EQ), tmp, lj_ir_kint(J, 0));
} else {
lj_trace_err(J, LJ_TRERR_NYITMIX);
}
}
}
/* Otherwise the key is located in the hash part. */
if (tref_isinteger(key)) /* Hash keys are based on numbers, not ints. */
ix->key = key = emitir(IRTN(IR_TONUM), key, 0);
if (tref_isk(key)) {
/* Optimize lookup of constant hash keys. */
MSize hslot = (MSize)((char *)ix->oldv - (char *)&noderef(t->node)[0].val);
if (t->hmask > 0 && hslot <= t->hmask*(MSize)sizeof(Node) &&
hslot <= 65535*(MSize)sizeof(Node)) {
TRef node, kslot;
TRef hm = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_HMASK);
emitir(IRTGI(IR_EQ), hm, lj_ir_kint(J, (int32_t)t->hmask));
node = emitir(IRT(IR_FLOAD, IRT_PTR), ix->tab, IRFL_TAB_NODE);
kslot = lj_ir_kslot(J, key, hslot / sizeof(Node));
return emitir(IRTG(IR_HREFK, IRT_PTR), node, kslot);
}
}
/* Fall back to a regular hash lookup. */
return emitir(IRT(IR_HREF, IRT_PTR), ix->tab, key);
}
/* Determine whether a key is NOT one of the fast metamethod names. */
static int nommstr(jit_State *J, TRef key)
{
if (tref_isstr(key)) {
if (tref_isk(key)) {
GCstr *str = ir_kstr(IR(tref_ref(key)));
uint32_t mm;
for (mm = 0; mm <= MM_FAST; mm++)
if (mmname_str(J2G(J), mm) == str)
return 0; /* MUST be one the fast metamethod names. */
} else {
return 0; /* Variable string key MAY be a metamethod name. */
}
}
return 1; /* CANNOT be a metamethod name. */
}
/* Record indexed load/store. */
static TRef rec_idx(jit_State *J, RecordIndex *ix)
{
TRef xref;
IROp xrefop, loadop;
cTValue *oldv;
while (!tref_istab(ix->tab)) { /* Handle non-table lookup. */
lua_assert(ix->idxchain != 0); /* Never call raw rec_idx() on non-table. */
if (!rec_mm_lookup(J, ix, ix->val ? MM_newindex : MM_index))
lj_trace_err(J, LJ_TRERR_NOMM);
handlemm:
if (tref_isfunc(ix->mobj)) { /* Handle metamethod call. */
BCReg func = rec_mm_prep(J, ix->val ? lj_cont_nop : lj_cont_ra);
TRef *base = J->base + func;
TValue *tv = J->L->base + func;
base[0] = ix->mobj; base[1] = ix->tab; base[2] = ix->key;
setfuncV(J->L, tv+0, funcV(&ix->mobjv));
copyTV(J->L, tv+1, &ix->tabv);
copyTV(J->L, tv+2, &ix->keyv);
if (ix->val) {
base[3] = ix->val;
copyTV(J->L, tv+3, &ix->valv);
rec_call(J, func, 3); /* mobj(tab, key, val) */
return 0;
} else {
rec_call(J, func, 2); /* res = mobj(tab, key) */
return 0; /* No result yet. */
}
}
/* Otherwise retry lookup with metaobject. */
ix->tab = ix->mobj;
copyTV(J->L, &ix->tabv, &ix->mobjv);
if (--ix->idxchain == 0)
lj_trace_err(J, LJ_TRERR_IDXLOOP);
}
/* First catch nil and NaN keys for tables. */
if (tvisnil(&ix->keyv) || (tvisnum(&ix->keyv) && tvisnan(&ix->keyv))) {
if (ix->val) /* Better fail early. */
lj_trace_err(J, LJ_TRERR_STORENN);
if (tref_isk(ix->key)) {
if (ix->idxchain && rec_mm_lookup(J, ix, MM_index))
goto handlemm;
return TREF_NIL;
}
}
/* Record the key lookup. */
xref = rec_idx_key(J, ix);
xrefop = IR(tref_ref(xref))->o;
loadop = xrefop == IR_AREF ? IR_ALOAD : IR_HLOAD;
oldv = ix->oldv;
if (ix->val == 0) { /* Indexed load */
IRType t = itype2irt(oldv);
TRef res;
if (oldv == niltvg(J2G(J))) {
emitir(IRTG(IR_EQ, IRT_PTR), xref, lj_ir_kptr(J, niltvg(J2G(J))));
res = TREF_NIL;
} else {
res = emitir(IRTG(loadop, t), xref, 0);
}
if (t == IRT_NIL && ix->idxchain && rec_mm_lookup(J, ix, MM_index))
goto handlemm;
if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitives. */
return res;
} else { /* Indexed store. */
GCtab *mt = tabref(tabV(&ix->tabv)->metatable);
int keybarrier = tref_isgcv(ix->key) && !tref_isnil(ix->val);
if (tvisnil(oldv)) { /* Previous value was nil? */
/* Need to duplicate the hasmm check for the early guards. */
int hasmm = 0;
if (ix->idxchain && mt) {
cTValue *mo = lj_tab_getstr(mt, mmname_str(J2G(J), MM_newindex));
hasmm = mo && !tvisnil(mo);
}
if (hasmm)
emitir(IRTG(loadop, IRT_NIL), xref, 0); /* Guard for nil value. */
else if (xrefop == IR_HREF)
emitir(IRTG(oldv == niltvg(J2G(J)) ? IR_EQ : IR_NE, IRT_PTR),
xref, lj_ir_kptr(J, niltvg(J2G(J))));
if (ix->idxchain && rec_mm_lookup(J, ix, MM_newindex)) { /* Metamethod? */
lua_assert(hasmm);
goto handlemm;
}
lua_assert(!hasmm);
if (oldv == niltvg(J2G(J))) { /* Need to insert a new key. */
TRef key = ix->key;
if (tref_isinteger(key)) /* NEWREF needs a TValue as a key. */
key = emitir(IRTN(IR_TONUM), key, 0);
xref = emitir(IRT(IR_NEWREF, IRT_PTR), ix->tab, key);
keybarrier = 0; /* NEWREF already takes care of the key barrier. */
}
} else if (!lj_opt_fwd_wasnonnil(J, loadop, tref_ref(xref))) {
/* Cannot derive that the previous value was non-nil, must do checks. */
if (xrefop == IR_HREF) /* Guard against store to niltv. */
emitir(IRTG(IR_NE, IRT_PTR), xref, lj_ir_kptr(J, niltvg(J2G(J))));
if (ix->idxchain) { /* Metamethod lookup required? */
/* A check for NULL metatable is cheaper (hoistable) than a load. */
if (!mt) {
TRef mtref = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mtref, lj_ir_knull(J, IRT_TAB));
} else {
IRType t = itype2irt(oldv);
emitir(IRTG(loadop, t), xref, 0); /* Guard for non-nil value. */
}
}
} else {
keybarrier = 0; /* Previous non-nil value kept the key alive. */
}
if (tref_isinteger(ix->val)) /* Convert int to number before storing. */
ix->val = emitir(IRTN(IR_TONUM), ix->val, 0);
emitir(IRT(loadop+IRDELTA_L2S, tref_type(ix->val)), xref, ix->val);
if (keybarrier || tref_isgcv(ix->val))
emitir(IRT(IR_TBAR, IRT_NIL), ix->tab, 0);
/* Invalidate neg. metamethod cache for stores with certain string keys. */
if (!nommstr(J, ix->key)) {
TRef fref = emitir(IRT(IR_FREF, IRT_PTR), ix->tab, IRFL_TAB_NOMM);
emitir(IRT(IR_FSTORE, IRT_U8), fref, lj_ir_kint(J, 0));
}
J->needsnap = 1;
return 0;
}
}
/* -- Upvalue access ------------------------------------------------------ */
/* Record upvalue load/store. */
static TRef rec_upvalue(jit_State *J, uint32_t uv, TRef val)
{
GCupval *uvp = &gcref(J->fn->l.uvptr[uv])->uv;
TRef fn = getcurrf(J);
IRRef uref;
int needbarrier = 0;
/* Note: this effectively limits LJ_MAX_UPVAL to 127. */
uv = (uv << 8) | (hashrot(uvp->dhash, uvp->dhash + HASH_BIAS) & 0xff);
if (!uvp->closed) {
/* In current stack? */
if (uvval(uvp) >= J->L->stack && uvval(uvp) < J->L->maxstack) {
int32_t slot = (int32_t)(uvval(uvp) - (J->L->base - J->baseslot));
if (slot >= 0) { /* Aliases an SSA slot? */
slot -= (int32_t)J->baseslot; /* Note: slot number may be negative! */
/* NYI: add IR to guard that it's still aliasing the same slot. */
if (val == 0) {
return getslot(J, slot);
} else {
J->base[slot] = val;
if (slot >= (int32_t)J->maxslot) J->maxslot = (BCReg)(slot+1);
return 0;
}
}
}
uref = tref_ref(emitir(IRTG(IR_UREFO, IRT_PTR), fn, uv));
} else {
needbarrier = 1;
uref = tref_ref(emitir(IRTG(IR_UREFC, IRT_PTR), fn, uv));
}
if (val == 0) { /* Upvalue load */
IRType t = itype2irt(uvval(uvp));
TRef res = emitir(IRTG(IR_ULOAD, t), uref, 0);
if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitive refs. */
return res;
} else { /* Upvalue store. */
if (tref_isinteger(val)) /* Convert int to number before storing. */
val = emitir(IRTN(IR_TONUM), val, 0);
emitir(IRT(IR_USTORE, tref_type(val)), uref, val);
if (needbarrier && tref_isgcv(val))
emitir(IRT(IR_OBAR, IRT_NIL), uref, val);
J->needsnap = 1;
return 0;
}
}
/* -- Fast function recording handlers ------------------------------------ */
/* Conventions for fast function call handlers:
**
** The argument slots start at J->base[0]. All of them are guaranteed to be
** valid and type-specialized references. J->base[J->maxslot] is set to 0
** as a sentinel. The runtime argument values start at rd->argv[0].
**
** In general fast functions should check for presence of all of their
** arguments and for the correct argument types. Some simplifications
** are allowed if the interpreter throws instead. But even if recording
** is aborted, the generated IR must be consistent (no zero-refs).
**
** The number of results in rd->nres is set to 1. Handlers that return
** a different number of results need to override it. A negative value
** prevents return processing (e.g. for pending calls).
**
** Results need to be stored starting at J->base[0]. Return processing
** moves them to the right slots later.
**
** The per-ffid auxiliary data is the value of the 2nd part of the
** LJLIB_REC() annotation. This allows handling similar functionality
** in a common handler.
*/
/* Data used by handlers to record a fast function. */
typedef struct RecordFFData {
TValue *argv; /* Runtime argument values. */
ptrdiff_t nres; /* Number of returned results (defaults to 1). */
uint32_t data; /* Per-ffid auxiliary data (opcode, literal etc.). */
} RecordFFData;
/* Type of handler to record a fast function. */
typedef void (LJ_FASTCALL *RecordFunc)(jit_State *J, RecordFFData *rd);
/* Get runtime value of int argument. */
static int32_t argv2int(jit_State *J, TValue *o)
{
if (!tvisnum(o) && !(tvisstr(o) && lj_str_tonum(strV(o), o)))
lj_trace_err(J, LJ_TRERR_BADTYPE);
return lj_num2bit(numV(o));
}
/* Get runtime value of string argument. */
static GCstr *argv2str(jit_State *J, TValue *o)
{
if (LJ_LIKELY(tvisstr(o))) {
return strV(o);
} else {
GCstr *s;
if (!tvisnum(o))
lj_trace_err(J, LJ_TRERR_BADTYPE);
s = lj_str_fromnum(J->L, &o->n);
setstrV(J->L, o, s);
return s;
}
}
/* Return number of results wanted by caller. */
static ptrdiff_t results_wanted(jit_State *J)
{
TValue *frame = J->L->base-1;
if (frame_islua(frame))
return (ptrdiff_t)bc_b(frame_pc(frame)[-1]) - 1;
else
return -1;
}
/* Throw error for unsupported variant of fast function. */
LJ_NORET static void recff_nyiu(jit_State *J)
{
setfuncV(J->L, &J->errinfo, J->fn);
lj_trace_err_info(J, LJ_TRERR_NYIFFU);
}
/* Fallback handler for all fast functions that are not recorded (yet). */
static void LJ_FASTCALL recff_nyi(jit_State *J, RecordFFData *rd)
{
setfuncV(J->L, &J->errinfo, J->fn);
lj_trace_err_info(J, LJ_TRERR_NYIFF);
UNUSED(rd);
}
/* C functions can have arbitrary side-effects and are not recorded (yet). */
static void LJ_FASTCALL recff_c(jit_State *J, RecordFFData *rd)
{
setfuncV(J->L, &J->errinfo, J->fn);
lj_trace_err_info(J, LJ_TRERR_NYICF);
UNUSED(rd);
}
/* -- Base library fast functions ----------------------------------------- */
static void LJ_FASTCALL recff_assert(jit_State *J, RecordFFData *rd)
{
/* Arguments already specialized. The interpreter throws for nil/false. */
rd->nres = J->maxslot; /* Pass through all arguments. */
}
static void LJ_FASTCALL recff_type(jit_State *J, RecordFFData *rd)
{
/* Arguments already specialized. Result is a constant string. Neat, huh? */
IRType t = tref_isinteger(J->base[0]) ? IRT_NUM : tref_type(J->base[0]);
J->base[0] = lj_ir_kstr(J, strV(&J->fn->c.upvalue[t]));
UNUSED(rd);
}
static void LJ_FASTCALL recff_getmetatable(jit_State *J, RecordFFData *rd)
{
TRef tr = J->base[0];
if (tr) {
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
if (rec_mm_lookup(J, &ix, MM_metatable))
J->base[0] = ix.mobj;
else
J->base[0] = ix.mt;
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_setmetatable(jit_State *J, RecordFFData *rd)
{
TRef tr = J->base[0];
TRef mt = J->base[1];
if (tref_istab(tr) && (tref_istab(mt) || (mt && tref_isnil(mt)))) {
TRef fref, mtref;
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
rec_mm_lookup(J, &ix, MM_metatable); /* Guard for no __metatable field. */
fref = emitir(IRT(IR_FREF, IRT_PTR), tr, IRFL_TAB_META);
mtref = tref_isnil(mt) ? lj_ir_knull(J, IRT_TAB) : mt;
emitir(IRT(IR_FSTORE, IRT_TAB), fref, mtref);
if (!tref_isnil(mt))
emitir(IRT(IR_TBAR, IRT_TAB), tr, 0);
J->base[0] = tr;
J->needsnap = 1;
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_rawget(jit_State *J, RecordFFData *rd)
{
RecordIndex ix;
ix.tab = J->base[0]; ix.key = J->base[1];
if (tref_istab(ix.tab) && ix.key) {
ix.val = 0; ix.idxchain = 0;
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
copyTV(J->L, &ix.keyv, &rd->argv[1]);
J->base[0] = rec_idx(J, &ix);
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_rawset(jit_State *J, RecordFFData *rd)
{
RecordIndex ix;
ix.tab = J->base[0]; ix.key = J->base[1]; ix.val = J->base[2];
if (tref_istab(ix.tab) && ix.key && ix.val) {
ix.idxchain = 0;
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
copyTV(J->L, &ix.keyv, &rd->argv[1]);
copyTV(J->L, &ix.valv, &rd->argv[2]);
rec_idx(J, &ix);
/* Pass through table at J->base[0] as result. */
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_rawequal(jit_State *J, RecordFFData *rd)
{
TRef tra = J->base[0];
TRef trb = J->base[1];
if (tra && trb) {
int diff = rec_objcmp(J, tra, trb, &rd->argv[0], &rd->argv[1]);
J->base[0] = diff ? TREF_FALSE : TREF_TRUE;
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_tonumber(jit_State *J, RecordFFData *rd)
{
TRef tr = J->base[0];
if (tref_isnumber_str(tr)) {
TRef base = J->base[1];
if (base) {
base = lj_ir_toint(J, base);
if (!tref_isk(base) || IR(tref_ref(base))->i != 10)
recff_nyiu(J);
}
if (tref_isstr(tr)) {
TValue tmp;
if (!lj_str_tonum(strV(&rd->argv[0]), &tmp))
recff_nyiu(J); /* Would need an inverted STRTO for this case. */
tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
}
} else {
tr = TREF_NIL;
}
J->base[0] = tr;
UNUSED(rd);
}
static TValue *recff_tostring_cp(lua_State *L, lua_CFunction dummy, void *ud)
{
jit_State *J = (jit_State *)ud;
rec_tailcall(J, 0, 1);
UNUSED(L); UNUSED(dummy);
return NULL;
}
static void LJ_FASTCALL recff_tostring(jit_State *J, RecordFFData *rd)
{
TRef tr = J->base[0];
if (tref_isstr(tr)) {
/* Ignore __tostring in the string base metatable. */
/* Pass on result in J->base[0]. */
} else {
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
if (rec_mm_lookup(J, &ix, MM_tostring)) { /* Has __tostring metamethod? */
int errcode;
/* Temporarily insert metamethod below object. */
J->base[1] = tr;
J->base[0] = ix.mobj;
copyTV(J->L, &rd->argv[1], &rd->argv[0]);
copyTV(J->L, &rd->argv[0], &ix.mobjv);
/* Need to protect rec_tailcall because it may throw. */
errcode = lj_vm_cpcall(J->L, NULL, J, recff_tostring_cp);
/* Always undo Lua stack changes to avoid confusing the interpreter. */
copyTV(J->L, &rd->argv[0], &rd->argv[1]);
if (errcode)
lj_err_throw(J->L, errcode); /* Propagate errors. */
rd->nres = -1; /* Pending call. */
} else if (tref_isnumber(tr)) {
J->base[0] = emitir(IRT(IR_TOSTR, IRT_STR), tr, 0);
} else if (tref_ispri(tr)) {
J->base[0] = lj_ir_kstr(J, strV(&J->fn->c.upvalue[tref_type(tr)]));
} else {
recff_nyiu(J);
}
}
}
static void LJ_FASTCALL recff_ipairs_aux(jit_State *J, RecordFFData *rd)
{
RecordIndex ix;
ix.tab = J->base[0];
if (tref_istab(ix.tab)) {
if (!tvisnum(&rd->argv[1])) /* No support for string coercion. */
lj_trace_err(J, LJ_TRERR_BADTYPE);
setnumV(&ix.keyv, numV(&rd->argv[1])+(lua_Number)1);
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
ix.val = 0; ix.idxchain = 0;
ix.key = lj_ir_toint(J, J->base[1]);
J->base[0] = ix.key = emitir(IRTI(IR_ADD), ix.key, lj_ir_kint(J, 1));
J->base[1] = rec_idx(J, &ix);
rd->nres = tref_isnil(J->base[1]) ? 0 : 2;
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_ipairs(jit_State *J, RecordFFData *rd)
{
TRef tab = J->base[0];
if (tref_istab(tab)) {
J->base[0] = lj_ir_kfunc(J, funcV(&J->fn->c.upvalue[0]));
J->base[1] = tab;
J->base[2] = lj_ir_kint(J, 0);
rd->nres = 3;
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_pcall(jit_State *J, RecordFFData *rd)
{
if (J->maxslot >= 1) {
rec_call(J, 0, J->maxslot - 1);
rd->nres = -1; /* Pending call. */
} /* else: Interpreter will throw. */
}
static TValue *recff_xpcall_cp(lua_State *L, lua_CFunction dummy, void *ud)
{
jit_State *J = (jit_State *)ud;
rec_call(J, 1, J->maxslot - 2);
UNUSED(L); UNUSED(dummy);
return NULL;
}
static void LJ_FASTCALL recff_xpcall(jit_State *J, RecordFFData *rd)
{
if (J->maxslot >= 2) {
TValue argv0, argv1;
TRef tmp;
int errcode;
/* Swap function and traceback. */
tmp = J->base[0]; J->base[0] = J->base[1]; J->base[1] = tmp;
copyTV(J->L, &argv0, &rd->argv[0]);
copyTV(J->L, &argv1, &rd->argv[1]);
copyTV(J->L, &rd->argv[0], &argv1);
copyTV(J->L, &rd->argv[1], &argv0);
/* Need to protect rec_call because it may throw. */
errcode = lj_vm_cpcall(J->L, NULL, J, recff_xpcall_cp);
/* Always undo Lua stack swap to avoid confusing the interpreter. */
copyTV(J->L, &rd->argv[0], &argv0);
copyTV(J->L, &rd->argv[1], &argv1);
if (errcode)
lj_err_throw(J->L, errcode); /* Propagate errors. */
rd->nres = -1; /* Pending call. */
} /* else: Interpreter will throw. */
}
/* -- Math library fast functions ----------------------------------------- */
static void LJ_FASTCALL recff_math_abs(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
J->base[0] = emitir(IRTN(IR_ABS), tr, lj_ir_knum_abs(J));
UNUSED(rd);
}
/* Record rounding functions math.floor and math.ceil. */
static void LJ_FASTCALL recff_math_round(jit_State *J, RecordFFData *rd)
{
if (!tref_isinteger(J->base[0])) /* Pass through integers unmodified. */
J->base[0] = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, J->base[0]), rd->data);
/* Note: result is integral (or NaN/Inf), but may not fit into an integer. */
}
/* Record unary math.* functions, mapped to IR_FPMATH opcode. */
static void LJ_FASTCALL recff_math_unary(jit_State *J, RecordFFData *rd)
{
J->base[0] = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, J->base[0]), rd->data);
}
/* Record binary math.* functions math.atan2 and math.ldexp. */
static void LJ_FASTCALL recff_math_binary(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
J->base[0] = emitir(IRTN(rd->data), tr, lj_ir_tonum(J, J->base[1]));
}
/* Record math.asin, math.acos, math.atan. */
static void LJ_FASTCALL recff_math_atrig(jit_State *J, RecordFFData *rd)
{
TRef y = lj_ir_tonum(J, J->base[0]);
TRef x = lj_ir_knum_one(J);
uint32_t ffid = rd->data;
if (ffid != FF_math_atan) {
TRef tmp = emitir(IRTN(IR_MUL), y, y);
tmp = emitir(IRTN(IR_SUB), x, tmp);
tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_SQRT);
if (ffid == FF_math_asin) { x = tmp; } else { x = y; y = tmp; }
}
J->base[0] = emitir(IRTN(IR_ATAN2), y, x);
}
static void LJ_FASTCALL recff_math_htrig(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
J->base[0] = lj_ir_call(J, rd->data, tr);
}
static void LJ_FASTCALL recff_math_modf(jit_State *J, RecordFFData *rd)
{
TRef tr = J->base[0];
if (tref_isinteger(tr)) {
J->base[0] = tr;
J->base[1] = lj_ir_kint(J, 0);
} else {
TRef trt;
tr = lj_ir_tonum(J, tr);
trt = emitir(IRTN(IR_FPMATH), tr, IRFPM_TRUNC);
J->base[0] = trt;
J->base[1] = emitir(IRTN(IR_SUB), tr, trt);
}
rd->nres = 2;
}
static void LJ_FASTCALL recff_math_degrad(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
TRef trm = lj_ir_knum(J, numV(&J->fn->c.upvalue[0]));
J->base[0] = emitir(IRTN(IR_MUL), tr, trm);
UNUSED(rd);
}
static void LJ_FASTCALL recff_math_pow(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
if (!tref_isnumber_str(J->base[1]))
lj_trace_err(J, LJ_TRERR_BADTYPE);
J->base[0] = lj_opt_narrow_pow(J, tr, J->base[1], &rd->argv[1]);
UNUSED(rd);
}
static void LJ_FASTCALL recff_math_minmax(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, J->base[0]);
uint32_t op = rd->data;
BCReg i;
for (i = 1; J->base[i] != 0; i++)
tr = emitir(IRTN(op), tr, lj_ir_tonum(J, J->base[i]));
J->base[0] = tr;
}
static void LJ_FASTCALL recff_math_random(jit_State *J, RecordFFData *rd)
{
GCudata *ud = udataV(&J->fn->c.upvalue[0]);
TRef tr, one;
lj_ir_kgc(J, obj2gco(ud), IRT_UDATA); /* Prevent collection. */
tr = lj_ir_call(J, IRCALL_lj_math_random_step, lj_ir_kptr(J, uddata(ud)));
one = lj_ir_knum_one(J);
tr = emitir(IRTN(IR_SUB), tr, one);
if (J->base[0]) {
TRef tr1 = lj_ir_tonum(J, J->base[0]);
if (J->base[1]) { /* d = floor(d*(r2-r1+1.0)) + r1 */
TRef tr2 = lj_ir_tonum(J, J->base[1]);
tr2 = emitir(IRTN(IR_SUB), tr2, tr1);
tr2 = emitir(IRTN(IR_ADD), tr2, one);
tr = emitir(IRTN(IR_MUL), tr, tr2);
tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR);
tr = emitir(IRTN(IR_ADD), tr, tr1);
} else { /* d = floor(d*r1) + 1.0 */
tr = emitir(IRTN(IR_MUL), tr, tr1);
tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR);
tr = emitir(IRTN(IR_ADD), tr, one);
}
}
J->base[0] = tr;
UNUSED(rd);
}
/* -- Bit library fast functions ------------------------------------------ */
/* Record unary bit.tobit, bit.bnot, bit.bswap. */
static void LJ_FASTCALL recff_bit_unary(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, J->base[0]);
J->base[0] = (rd->data == IR_TOBIT) ? tr : emitir(IRTI(rd->data), tr, 0);
}
/* Record N-ary bit.band, bit.bor, bit.bxor. */
static void LJ_FASTCALL recff_bit_nary(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, J->base[0]);
uint32_t op = rd->data;
BCReg i;
for (i = 1; J->base[i] != 0; i++)
tr = emitir(IRTI(op), tr, lj_ir_tobit(J, J->base[i]));
J->base[0] = tr;
}
/* Record bit shifts. */
static void LJ_FASTCALL recff_bit_shift(jit_State *J, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, J->base[0]);
TRef tsh = lj_ir_tobit(J, J->base[1]);
#if !LJ_TARGET_MASKEDSHIFT
if (!tref_isk(tsh))
tsh = emitir(IRTI(IR_BAND), tsh, lj_ir_kint(J, 31));
#endif
J->base[0] = emitir(IRTI(rd->data), tr, tsh);
}
/* -- String library fast functions --------------------------------------- */
static void LJ_FASTCALL recff_string_len(jit_State *J, RecordFFData *rd)
{
J->base[0] = emitir(IRTI(IR_FLOAD), lj_ir_tostr(J, J->base[0]), IRFL_STR_LEN);
UNUSED(rd);
}
/* Handle string.byte (rd->data = 0) and string.sub (rd->data = 1). */
static void LJ_FASTCALL recff_string_range(jit_State *J, RecordFFData *rd)
{
TRef trstr = lj_ir_tostr(J, J->base[0]);
TRef trlen = emitir(IRTI(IR_FLOAD), trstr, IRFL_STR_LEN);
TRef tr0 = lj_ir_kint(J, 0);
TRef trstart, trend;
GCstr *str = argv2str(J, &rd->argv[0]);
int32_t start, end;
if (rd->data) { /* string.sub(str, start [,end]) */
start = argv2int(J, &rd->argv[1]);
trstart = lj_ir_toint(J, J->base[1]);
trend = J->base[2];
if (tref_isnil(trend)) {
trend = lj_ir_kint(J, -1);
end = -1;
} else {
trend = lj_ir_toint(J, trend);
end = argv2int(J, &rd->argv[2]);
}
} else { /* string.byte(str, [,start [,end]]) */
if (J->base[1]) {
start = argv2int(J, &rd->argv[1]);
trstart = lj_ir_toint(J, J->base[1]);
trend = J->base[2];
if (tref_isnil(trend)) {
trend = trstart;
end = start;
} else {
trend = lj_ir_toint(J, trend);
end = argv2int(J, &rd->argv[2]);
}
} else {
trend = trstart = lj_ir_kint(J, 1);
end = start = 1;
}
}
if (end < 0) {
emitir(IRTGI(IR_LT), trend, tr0);
trend = emitir(IRTI(IR_ADD), emitir(IRTI(IR_ADD), trlen, trend),
lj_ir_kint(J, 1));
end = end+(int32_t)str->len+1;
} else if ((MSize)end <= str->len) {
emitir(IRTGI(IR_ULE), trend, trlen);
} else {
emitir(IRTGI(IR_GT), trend, trlen);
end = (int32_t)str->len;
trend = trlen;
}
if (start < 0) {
emitir(IRTGI(IR_LT), trstart, tr0);
trstart = emitir(IRTI(IR_ADD), trlen, trstart);
start = start+(int32_t)str->len;
emitir(start < 0 ? IRTGI(IR_LT) : IRTGI(IR_GE), trstart, tr0);
if (start < 0) {
trstart = tr0;
start = 0;
}
} else {
if (start == 0) {
emitir(IRTGI(IR_EQ), trstart, tr0);
trstart = tr0;
} else {
trstart = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, -1));
emitir(IRTGI(IR_GE), trstart, tr0);
start--;
}
}
if (rd->data) { /* Return string.sub result. */
if (end - start >= 0) {
/* Also handle empty range here, to avoid extra traces. */
TRef trptr, trslen = emitir(IRTI(IR_SUB), trend, trstart);
emitir(IRTGI(IR_GE), trslen, tr0);
trptr = emitir(IRT(IR_STRREF, IRT_PTR), trstr, trstart);
J->base[0] = emitir(IRT(IR_SNEW, IRT_STR), trptr, trslen);
} else { /* Range underflow: return empty string. */
emitir(IRTGI(IR_LT), trend, trstart);
J->base[0] = lj_ir_kstr(J, lj_str_new(J->L, strdata(str), 0));
}
} else { /* Return string.byte result(s). */
ptrdiff_t i, len = end - start;
if (len > 0) {
TRef trslen = emitir(IRTI(IR_SUB), trend, trstart);
emitir(IRTGI(IR_EQ), trslen, lj_ir_kint(J, (int32_t)len));
if (J->baseslot + len > LJ_MAX_JSLOTS)
lj_trace_err_info(J, LJ_TRERR_STACKOV);
rd->nres = len;
for (i = 0; i < len; i++) {
TRef tmp = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, (int32_t)i));
tmp = emitir(IRT(IR_STRREF, IRT_PTR), trstr, tmp);
J->base[i] = emitir(IRT(IR_XLOAD, IRT_U8), tmp, IRXLOAD_READONLY);
}
} else { /* Empty range or range underflow: return no results. */
emitir(IRTGI(IR_LE), trend, trstart);
rd->nres = 0;
}
}
}
/* -- Table library fast functions ---------------------------------------- */
static void LJ_FASTCALL recff_table_getn(jit_State *J, RecordFFData *rd)
{
if (tref_istab(J->base[0]))
J->base[0] = lj_ir_call(J, IRCALL_lj_tab_len, J->base[0]);
/* else: Interpreter will throw. */
UNUSED(rd);
}
static void LJ_FASTCALL recff_table_remove(jit_State *J, RecordFFData *rd)
{
TRef tab = J->base[0];
rd->nres = 0;
if (tref_istab(tab)) {
if (!J->base[1] || tref_isnil(J->base[1])) { /* Simple pop: t[#t] = nil */
TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, tab);
GCtab *t = tabV(&rd->argv[0]);
MSize len = lj_tab_len(t);
emitir(IRTGI(len ? IR_NE : IR_EQ), trlen, lj_ir_kint(J, 0));
if (len) {
RecordIndex ix;
ix.tab = tab;
ix.key = trlen;
settabV(J->L, &ix.tabv, t);
setintV(&ix.keyv, len);
ix.idxchain = 0;
if (results_wanted(J) != 0) { /* Specialize load only if needed. */
ix.val = 0;
J->base[0] = rec_idx(J, &ix); /* Load previous value. */
rd->nres = 1;
/* Assumes ix.key/ix.tab is not modified for raw rec_idx(). */
}
ix.val = TREF_NIL;
rec_idx(J, &ix); /* Remove value. */
}
} else { /* Complex case: remove in the middle. */
recff_nyiu(J);
}
} /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_table_insert(jit_State *J, RecordFFData *rd)
{
RecordIndex ix;
ix.tab = J->base[0];
ix.val = J->base[1];
rd->nres = 0;
if (tref_istab(ix.tab) && ix.val) {
if (!J->base[2]) { /* Simple push: t[#t+1] = v */
TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, ix.tab);
GCtab *t = tabV(&rd->argv[0]);
ix.key = emitir(IRTI(IR_ADD), trlen, lj_ir_kint(J, 1));
settabV(J->L, &ix.tabv, t);
setintV(&ix.keyv, lj_tab_len(t) + 1);
ix.idxchain = 0;
rec_idx(J, &ix); /* Set new value. */
} else { /* Complex case: insert in the middle. */
recff_nyiu(J);
}
} /* else: Interpreter will throw. */
}
/* -- I/O library fast functions ------------------------------------------ */
/* Get FILE* for I/O function. Any I/O error aborts recording, so there's
** no need to encode the alternate cases for any of the guards.
*/
static TRef recff_io_fp(jit_State *J, uint32_t id)
{
TRef tr, ud, fp;
if (id) { /* io.func() */
tr = lj_ir_kptr(J, &J2G(J)->gcroot[id]);
ud = emitir(IRT(IR_XLOAD, IRT_UDATA), tr, 0);
} else { /* fp:method() */
ud = J->base[0];
if (!tref_isudata(ud))
lj_trace_err(J, LJ_TRERR_BADTYPE);
tr = emitir(IRT(IR_FLOAD, IRT_U8), ud, IRFL_UDATA_UDTYPE);
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, UDTYPE_IO_FILE));
}
fp = emitir(IRT(IR_FLOAD, IRT_LIGHTUD), ud, IRFL_UDATA_FILE);
emitir(IRTG(IR_NE, IRT_LIGHTUD), fp, lj_ir_knull(J, IRT_LIGHTUD));
return fp;
}
static void LJ_FASTCALL recff_io_write(jit_State *J, RecordFFData *rd)
{
TRef fp = recff_io_fp(J, rd->data);
TRef zero = lj_ir_kint(J, 0);
TRef one = lj_ir_kint(J, 1);
ptrdiff_t i = rd->data == 0 ? 1 : 0;
for (; J->base[i]; i++) {
TRef str = lj_ir_tostr(J, J->base[i]);
TRef buf = emitir(IRT(IR_STRREF, IRT_PTR), str, zero);
TRef len = emitir(IRTI(IR_FLOAD), str, IRFL_STR_LEN);
if (tref_isk(len) && IR(tref_ref(len))->i == 1) {
TRef tr = emitir(IRT(IR_XLOAD, IRT_U8), buf, IRXLOAD_READONLY);
tr = lj_ir_call(J, IRCALL_fputc, tr, fp);
if (results_wanted(J) != 0) /* Check result only if not ignored. */
emitir(IRTGI(IR_NE), tr, lj_ir_kint(J, -1));
} else {
TRef tr = lj_ir_call(J, IRCALL_fwrite, buf, one, len, fp);
if (results_wanted(J) != 0) /* Check result only if not ignored. */
emitir(IRTGI(IR_EQ), tr, len);
}
}
J->base[0] = TREF_TRUE;
}
static void LJ_FASTCALL recff_io_flush(jit_State *J, RecordFFData *rd)
{
TRef fp = recff_io_fp(J, rd->data);
TRef tr = lj_ir_call(J, IRCALL_fflush, fp);
if (results_wanted(J) != 0) /* Check result only if not ignored. */
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, 0));
J->base[0] = TREF_TRUE;
}
/* -- Record calls to fast functions -------------------------------------- */
#include "lj_recdef.h"
static uint32_t recdef_lookup(GCfunc *fn)
{
if (fn->c.ffid < sizeof(recff_idmap)/sizeof(recff_idmap[0]))
return recff_idmap[fn->c.ffid];
else
return 0;
}
/* Record entry to a fast function or C function. */
static void rec_func_ff(jit_State *J)
{
RecordFFData rd;
uint32_t m = recdef_lookup(J->fn);
rd.data = m & 0xff;
rd.nres = 1; /* Default is one result. */
rd.argv = J->L->base;
J->base[J->maxslot] = 0; /* Mark end of arguments. */
(recff_func[m >> 8])(J, &rd); /* Call recff_* handler. */
if (rd.nres >= 0)
rec_ret(J, 0, rd.nres);
}
/* -- Record calls to Lua functions --------------------------------------- */
/* Check unroll limits for calls. */
static void check_call_unroll(jit_State *J)
{
IRRef fref = tref_ref(J->base[-1]);
int32_t count = 0;
BCReg s;
for (s = J->baseslot - 1; s > 0; s--)
if ((J->slot[s] & TREF_FRAME) && tref_ref(J->slot[s]) == fref)
count++;
if (J->pc == J->startpc) {
if (count + J->tailcalled > J->param[JIT_P_recunroll]) {
J->pc++;
rec_stop(J, J->cur.traceno); /* Up-recursion or tail-recursion. */
}
} else {
if (count > J->param[JIT_P_callunroll])
lj_trace_err(J, LJ_TRERR_CUNROLL);
}
}
/* Record Lua function setup. */
static void rec_func_setup(jit_State *J)
{
GCproto *pt = J->pt;
BCReg s, numparams = pt->numparams;
if ((pt->flags & PROTO_NO_JIT))
lj_trace_err(J, LJ_TRERR_CJITOFF);
lua_assert(!(pt->flags & PROTO_IS_VARARG));
if (J->baseslot + pt->framesize >= LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
/* Fill up missing parameters with nil. */
for (s = J->maxslot; s < numparams; s++)
J->base[s] = TREF_NIL;
/* The remaining slots should never be read before they are written. */
J->maxslot = numparams;
}
/* Record entry to a Lua function. */
static void rec_func_lua(jit_State *J)
{
rec_func_setup(J);
check_call_unroll(J);
}
/* Record entry to an already compiled function. */
static void rec_func_jit(jit_State *J, TraceNo lnk)
{
rec_func_setup(J);
J->instunroll = 0; /* Cannot continue across a compiled function. */
if (J->pc == J->startpc && J->framedepth + J->retdepth == 0)
lnk = J->cur.traceno; /* Can form an extra tail-recursive loop. */
rec_stop(J, lnk); /* Link to the function. */
}
/* -- Record allocations -------------------------------------------------- */
static TRef rec_tnew(jit_State *J, uint32_t ah)
{
uint32_t asize = ah & 0x7ff;
uint32_t hbits = ah >> 11;
if (asize == 0x7ff) asize = 0x801;
return emitir(IRTG(IR_TNEW, IRT_TAB), asize, hbits);
}
/* -- Record bytecode ops ------------------------------------------------- */
/* Prepare for comparison. */
static void rec_comp_prep(jit_State *J)
{
/* Prevent merging with snapshot #0 (GC exit) since we fixup the PC. */
if (J->cur.nsnap == 1 && J->cur.snap[0].ref == J->cur.nins)
emitir_raw(IRT(IR_NOP, IRT_NIL), 0, 0);
lj_snap_add(J);
}
/* Fixup comparison. */
static void rec_comp_fixup(jit_State *J, int cond)
{
BCIns jmpins = J->pc[1];
const BCIns *npc = J->pc + 2 + (cond ? bc_j(jmpins) : 0);
SnapShot *snap = &J->cur.snap[J->cur.nsnap-1];
/* Set PC to opposite target to avoid re-recording the comp. in side trace. */
J->cur.snapmap[snap->mapofs + snap->nent] = SNAP_MKPC(npc);
J->needsnap = 1;
/* Shrink last snapshot if possible. */
if (bc_a(jmpins) < J->maxslot) {
J->maxslot = bc_a(jmpins);
lj_snap_shrink(J);
}
}
/* Record the next bytecode instruction (_before_ it's executed). */
void lj_record_ins(jit_State *J)
{
cTValue *lbase;
RecordIndex ix;
const BCIns *pc;
BCIns ins;
BCOp op;
TRef ra, rb, rc;
/* Need snapshot before recording next bytecode (e.g. after a store). */
if (J->needsnap) {
J->needsnap = 0;
lj_snap_add(J);
J->mergesnap = 1;
}
/* Record only closed loops for root traces. */
pc = J->pc;
if (J->framedepth == 0 &&
(MSize)((char *)pc - (char *)J->bc_min) >= J->bc_extent)
lj_trace_err(J, LJ_TRERR_LLEAVE);
#ifdef LUA_USE_ASSERT
rec_check_slots(J);
rec_check_ir(J);
#endif
/* Keep a copy of the runtime values of var/num/str operands. */
#define rav (&ix.valv)
#define rbv (&ix.tabv)
#define rcv (&ix.keyv)
lbase = J->L->base;
ins = *pc;
op = bc_op(ins);
ra = bc_a(ins);
ix.val = 0;
switch (bcmode_a(op)) {
case BCMvar:
copyTV(J->L, rav, &lbase[ra]); ix.val = ra = getslot(J, ra); break;
default: break; /* Handled later. */
}
rb = bc_b(ins);
rc = bc_c(ins);
switch (bcmode_b(op)) {
case BCMnone: rb = 0; rc = bc_d(ins); break; /* Upgrade rc to 'rd'. */
case BCMvar:
copyTV(J->L, rbv, &lbase[rb]); ix.tab = rb = getslot(J, rb); break;
case BCMnum: { lua_Number n = proto_knum(J->pt, rb);
setnumV(rbv, n); ix.tab = rb = lj_ir_knumint(J, n); } break;
default: break; /* Handled later. */
}
switch (bcmode_c(op)) {
case BCMvar:
copyTV(J->L, rcv, &lbase[rc]); ix.key = rc = getslot(J, rc); break;
case BCMpri: setitype(rcv, ~rc); rc = TREF_PRI(IRT_NIL+rc); break;
case BCMnum: { lua_Number n = proto_knum(J->pt, rc);
setnumV(rcv, n); ix.key = rc = lj_ir_knumint(J, n); } break;
case BCMstr: { GCstr *s = gco2str(proto_kgc(J->pt, ~(ptrdiff_t)rc));
setstrV(J->L, rcv, s); ix.key = rc = lj_ir_kstr(J, s); } break;
default: break; /* Handled later. */
}
switch (op) {
/* -- Comparison ops ---------------------------------------------------- */
case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
/* Emit nothing for two numeric or string consts. */
if (!(tref_isk2(ra,rc) && tref_isnumber_str(ra) && tref_isnumber_str(rc))) {
IRType ta = tref_isinteger(ra) ? IRT_INT : tref_type(ra);
IRType tc = tref_isinteger(rc) ? IRT_INT : tref_type(rc);
int irop;
if (ta != tc) {
/* Widen mixed number/int comparisons to number/number comparison. */
if (ta == IRT_INT && tc == IRT_NUM) {
ra = emitir(IRTN(IR_TONUM), ra, 0);
ta = IRT_NUM;
} else if (ta == IRT_NUM && tc == IRT_INT) {
rc = emitir(IRTN(IR_TONUM), rc, 0);
} else if (!((ta == IRT_FALSE || ta == IRT_TRUE) &&
(tc == IRT_FALSE || tc == IRT_TRUE))) {
break; /* Interpreter will throw for two different types. */
}
}
rec_comp_prep(J);
irop = (int)op - (int)BC_ISLT + (int)IR_LT;
if (ta == IRT_NUM) {
if ((irop & 1)) irop ^= 4; /* ISGE/ISGT are unordered. */
if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 5;
} else if (ta == IRT_INT) {
if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 1;
} else if (ta == IRT_STR) {
if (!lj_ir_strcmp(strV(rav), strV(rcv), (IROp)irop)) irop ^= 1;
ra = lj_ir_call(J, IRCALL_lj_str_cmp, ra, rc);
rc = lj_ir_kint(J, 0);
ta = IRT_INT;
} else {
rec_mm_comp(J, &ix, (int)op);
break;
}
emitir(IRTG(irop, ta), ra, rc);
rec_comp_fixup(J, ((int)op ^ irop) & 1);
}
break;
case BC_ISEQV: case BC_ISNEV:
case BC_ISEQS: case BC_ISNES:
case BC_ISEQN: case BC_ISNEN:
case BC_ISEQP: case BC_ISNEP:
/* Emit nothing for two non-table, non-udata consts. */
if (!(tref_isk2(ra, rc) && !(tref_istab(ra) || tref_isudata(ra)))) {
int diff;
rec_comp_prep(J);
diff = rec_objcmp(J, ra, rc, rav, rcv);
if (diff == 1 && (tref_istab(ra) || tref_isudata(ra))) {
/* Only check __eq if different, but the same type (table or udata). */
rec_mm_equal(J, &ix, (int)op);
break;
}
rec_comp_fixup(J, ((int)op & 1) == !diff);
}
break;
/* -- Unary test and copy ops ------------------------------------------- */
case BC_ISTC: case BC_ISFC:
if ((op & 1) == tref_istruecond(rc))
rc = 0; /* Don't store if condition is not true. */
/* fallthrough */
case BC_IST: case BC_ISF: /* Type specialization suffices. */
if (bc_a(pc[1]) < J->maxslot)
J->maxslot = bc_a(pc[1]); /* Shrink used slots. */
break;
/* -- Unary ops --------------------------------------------------------- */
case BC_NOT:
/* Type specialization already forces const result. */
rc = tref_istruecond(rc) ? TREF_FALSE : TREF_TRUE;
break;
case BC_LEN:
if (tref_isstr(rc)) {
rc = emitir(IRTI(IR_FLOAD), rc, IRFL_STR_LEN);
} else if (tref_istab(rc)) {
rc = lj_ir_call(J, IRCALL_lj_tab_len, rc);
} else {
ix.tab = rc;
copyTV(J->L, &ix.tabv, &ix.keyv);
ix.key = TREF_NIL;
setnilV(&ix.keyv);
rc = rec_mm_arith(J, &ix, MM_len);
}
break;
/* -- Arithmetic ops ---------------------------------------------------- */
case BC_UNM:
if (tref_isnumber_str(rc)) {
rc = lj_ir_tonum(J, rc);
rc = emitir(IRTN(IR_NEG), rc, lj_ir_knum_neg(J));
} else {
ix.tab = rc;
copyTV(J->L, &ix.tabv, &ix.keyv);
rc = rec_mm_arith(J, &ix, MM_unm);
}
break;
case BC_ADDNV: case BC_SUBNV: case BC_MULNV: case BC_DIVNV: case BC_MODNV:
ix.tab = rc; ix.key = rc = rb; rb = ix.tab;
copyTV(J->L, &ix.valv, &ix.tabv);
copyTV(J->L, &ix.tabv, &ix.keyv);
copyTV(J->L, &ix.keyv, &ix.valv);
if (op == BC_MODNV)
goto recmod;
/* fallthrough */
case BC_ADDVN: case BC_SUBVN: case BC_MULVN: case BC_DIVVN:
case BC_ADDVV: case BC_SUBVV: case BC_MULVV: case BC_DIVVV: {
MMS mm = bcmode_mm(op);
if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) {
rb = lj_ir_tonum(J, rb);
rc = lj_ir_tonum(J, rc);
rc = emitir(IRTN((int)mm - (int)MM_add + (int)IR_ADD), rb, rc);
} else {
rc = rec_mm_arith(J, &ix, mm);
}
break;
}
case BC_MODVN: case BC_MODVV:
recmod:
if (tref_isnumber_str(rb) && tref_isnumber_str(rc))
rc = lj_opt_narrow_mod(J, rb, rc);
else
rc = rec_mm_arith(J, &ix, MM_mod);
break;
case BC_POW:
if (tref_isnumber_str(rb) && tref_isnumber_str(rc))
rc = lj_opt_narrow_pow(J, lj_ir_tonum(J, rb), rc, rcv);
else
rc = rec_mm_arith(J, &ix, MM_pow);
break;
/* -- Constant and move ops --------------------------------------------- */
case BC_MOV:
/* Clear gap of method call to avoid resurrecting previous refs. */
if (ra > J->maxslot) J->base[ra-1] = 0;
break;
case BC_KSTR: case BC_KNUM: case BC_KPRI:
break;
case BC_KSHORT:
rc = lj_ir_kint(J, (int32_t)(int16_t)rc);
break;
case BC_KNIL:
while (ra <= rc)
J->base[ra++] = TREF_NIL;
if (rc >= J->maxslot) J->maxslot = rc+1;
break;
/* -- Upvalue and function ops ------------------------------------------ */
case BC_UGET:
rc = rec_upvalue(J, rc, 0);
break;
case BC_USETV: case BC_USETS: case BC_USETN: case BC_USETP:
rec_upvalue(J, ra, rc);
break;
/* -- Table ops --------------------------------------------------------- */
case BC_GGET: case BC_GSET:
settabV(J->L, &ix.tabv, tabref(J->fn->l.env));
ix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), getcurrf(J), IRFL_FUNC_ENV);
ix.idxchain = LJ_MAX_IDXCHAIN;
rc = rec_idx(J, &ix);
break;
case BC_TGETB: case BC_TSETB:
setintV(&ix.keyv, (int32_t)rc);
ix.key = lj_ir_kint(J, (int32_t)rc);
/* fallthrough */
case BC_TGETV: case BC_TGETS: case BC_TSETV: case BC_TSETS:
ix.idxchain = LJ_MAX_IDXCHAIN;
rc = rec_idx(J, &ix);
break;
case BC_TNEW:
rc = rec_tnew(J, rc);
break;
case BC_TDUP:
rc = emitir(IRTG(IR_TDUP, IRT_TAB),
lj_ir_ktab(J, gco2tab(proto_kgc(J->pt, ~(ptrdiff_t)rc))), 0);
break;
/* -- Calls and vararg handling ----------------------------------------- */
case BC_ITERC:
J->base[ra] = getslot(J, ra-3);
J->base[ra+1] = getslot(J, ra-2);
J->base[ra+2] = getslot(J, ra-1);
{ /* Have to do the actual copy now because rec_call needs the values. */
TValue *b = &J->L->base[ra];
copyTV(J->L, b, b-3);
copyTV(J->L, b+1, b-2);
copyTV(J->L, b+2, b-1);
}
rec_call(J, ra, (ptrdiff_t)rc-1);
break;
/* L->top is set to L->base+ra+rc+NARGS-1+1. See lj_dispatch_ins(). */
case BC_CALLM:
rc = (BCReg)(J->L->top - J->L->base) - ra;
/* fallthrough */
case BC_CALL:
rec_call(J, ra, (ptrdiff_t)rc-1);
break;
case BC_CALLMT:
rc = (BCReg)(J->L->top - J->L->base) - ra;
/* fallthrough */
case BC_CALLT:
rec_tailcall(J, ra, (ptrdiff_t)rc-1);
break;
/* -- Returns ----------------------------------------------------------- */
case BC_RETM:
/* L->top is set to L->base+ra+rc+NRESULTS-1, see lj_dispatch_ins(). */
rc = (BCReg)(J->L->top - J->L->base) - ra + 1;
/* fallthrough */
case BC_RET: case BC_RET0: case BC_RET1:
rec_ret(J, ra, (ptrdiff_t)rc-1);
break;
/* -- Loops and branches ------------------------------------------------ */
case BC_FORI:
if (rec_for(J, pc, 0) != LOOPEV_LEAVE)
J->loopref = J->cur.nins;
break;
case BC_JFORI:
lua_assert(bc_op(pc[(ptrdiff_t)rc-BCBIAS_J]) == BC_JFORL);
if (rec_for(J, pc, 0) != LOOPEV_LEAVE) /* Link to existing loop. */
rec_stop(J, bc_d(pc[(ptrdiff_t)rc-BCBIAS_J]));
/* Continue tracing if the loop is not entered. */
break;
case BC_FORL:
rec_loop_interp(J, pc, rec_for(J, pc+((ptrdiff_t)rc-BCBIAS_J), 1));
break;
case BC_ITERL:
rec_loop_interp(J, pc, rec_iterl(J, *pc));
break;
case BC_LOOP:
rec_loop_interp(J, pc, rec_loop(J, ra));
break;
case BC_JFORL:
rec_loop_jit(J, rc, rec_for(J, pc+bc_j(traceref(J, rc)->startins), 1));
break;
case BC_JITERL:
rec_loop_jit(J, rc, rec_iterl(J, traceref(J, rc)->startins));
break;
case BC_JLOOP:
rec_loop_jit(J, rc, rec_loop(J, ra));
break;
case BC_IFORL:
case BC_IITERL:
case BC_ILOOP:
case BC_IFUNCF:
case BC_IFUNCV:
lj_trace_err(J, LJ_TRERR_BLACKL);
break;
case BC_JMP:
if (ra < J->maxslot)
J->maxslot = ra; /* Shrink used slots. */
break;
/* -- Function headers -------------------------------------------------- */
case BC_FUNCF:
rec_func_lua(J);
break;
case BC_JFUNCF:
rec_func_jit(J, rc);
break;
case BC_FUNCV:
case BC_JFUNCV:
lj_trace_err(J, LJ_TRERR_NYIVF);
break;
case BC_FUNCC:
case BC_FUNCCW:
rec_func_ff(J);
break;
default:
if (op >= BC__MAX) {
rec_func_ff(J);
break;
}
/* fallthrough */
case BC_CAT:
case BC_UCLO:
case BC_FNEW:
case BC_TSETM:
case BC_VARG:
setintV(&J->errinfo, (int32_t)op);
lj_trace_err_info(J, LJ_TRERR_NYIBC);
break;
}
/* rc == 0 if we have no result yet, e.g. pending __index metamethod call. */
if (bcmode_a(op) == BCMdst && rc) {
J->base[ra] = rc;
if (ra >= J->maxslot) J->maxslot = ra+1;
}
#undef rav
#undef rbv
#undef rcv
/* Limit the number of recorded IR instructions. */
if (J->cur.nins > REF_FIRST+(IRRef)J->param[JIT_P_maxrecord])
lj_trace_err(J, LJ_TRERR_TRACEOV);
}
/* -- Recording setup ----------------------------------------------------- */
/* Setup recording for a FORL loop. */
static void rec_setup_forl(jit_State *J, const BCIns *fori)
{
BCReg ra = bc_a(*fori);
cTValue *forbase = &J->L->base[ra];
IRType t = (J->flags & JIT_F_OPT_NARROW) ? lj_opt_narrow_forl(forbase)
: IRT_NUM;
TRef stop = fori_arg(J, fori, ra+FORL_STOP, t);
TRef step = fori_arg(J, fori, ra+FORL_STEP, t);
int dir = (0 <= numV(&forbase[FORL_STEP]));
lua_assert(bc_op(*fori) == BC_FORI || bc_op(*fori) == BC_JFORI);
J->scev.t.irt = t;
J->scev.dir = dir;
J->scev.stop = tref_ref(stop);
J->scev.step = tref_ref(step);
if (!tref_isk(step)) {
/* Non-constant step: need a guard for the direction. */
TRef zero = (t == IRT_INT) ? lj_ir_kint(J, 0) : lj_ir_knum_zero(J);
emitir(IRTG(dir ? IR_GE : IR_LT, t), step, zero);
/* Add hoistable overflow checks for a narrowed FORL index. */
if (t == IRT_INT) {
if (tref_isk(stop)) {
/* Constant stop: optimize check away or to a range check for step. */
int32_t k = IR(tref_ref(stop))->i;
if (dir) {
if (k > 0)
emitir(IRTGI(IR_LE), step, lj_ir_kint(J, (int32_t)0x7fffffff-k));
} else {
if (k < 0)
emitir(IRTGI(IR_GE), step, lj_ir_kint(J, (int32_t)0x80000000-k));
}
} else {
/* Stop+step variable: need full overflow check (with dead result). */
emitir(IRTGI(IR_ADDOV), step, stop);
}
}
} else if (t == IRT_INT && !tref_isk(stop)) {
/* Constant step: optimize overflow check to a range check for stop. */
int32_t k = IR(tref_ref(step))->i;
k = (int32_t)(dir ? 0x7fffffff : 0x80000000) - k;
emitir(IRTGI(dir ? IR_LE : IR_GE), stop, lj_ir_kint(J, k));
}
J->scev.start = tref_ref(find_kinit(J, fori, ra+FORL_IDX, IRT_INT));
if (t == IRT_INT && !J->scev.start)
t |= IRT_GUARD;
J->base[ra+FORL_EXT] = sloadt(J, (int32_t)(ra+FORL_IDX), t, IRSLOAD_INHERIT);
J->scev.idx = tref_ref(J->base[ra+FORL_EXT]);
J->maxslot = ra+FORL_EXT+1;
}
/* Setup recording for a root trace started by a hot loop. */
static const BCIns *rec_setup_root(jit_State *J)
{
/* Determine the next PC and the bytecode range for the loop. */
const BCIns *pcj, *pc = J->pc;
BCIns ins = *pc;
BCReg ra = bc_a(ins);
switch (bc_op(ins)) {
case BC_FORL:
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
pc += 1+bc_j(ins);
J->bc_min = pc;
break;
case BC_ITERL:
lua_assert(bc_op(pc[-1]) == BC_ITERC);
J->maxslot = ra + bc_b(pc[-1]) - 1;
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
pc += 1+bc_j(ins);
lua_assert(bc_op(pc[-1]) == BC_JMP);
J->bc_min = pc;
break;
case BC_LOOP:
/* Only check BC range for real loops, but not for "repeat until true". */
pcj = pc + bc_j(ins);
ins = *pcj;
if (bc_op(ins) == BC_JMP && bc_j(ins) < 0) {
J->bc_min = pcj+1 + bc_j(ins);
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
}
J->maxslot = ra;
pc++;
break;
case BC_RET:
case BC_RET0:
case BC_RET1:
/* No bytecode range check for down-recursive root traces. */
J->maxslot = ra + bc_d(ins);
break;
case BC_FUNCF:
/* No bytecode range check for root traces started by a hot call. */
J->maxslot = J->pt->numparams;
pc++;
break;
default:
lua_assert(0);
break;
}
return pc;
}
/* Setup recording for a side trace. */
static void rec_setup_side(jit_State *J, GCtrace *T)
{
SnapShot *snap = &T->snap[J->exitno];
SnapEntry *map = &T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
BloomFilter seen = 0;
/* Emit IR for slots inherited from parent snapshot. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
IRRef ref = snap_ref(sn);
BCReg s = snap_slot(sn);
IRIns *ir = &T->ir[ref];
TRef tr;
/* The bloom filter avoids O(nent^2) overhead for de-duping slots. */
if (bloomtest(seen, ref)) {
MSize j;
for (j = 0; j < n; j++)
if (snap_ref(map[j]) == ref) {
tr = J->slot[snap_slot(map[j])];
goto setslot;
}
}
bloomset(seen, ref);
switch ((IROp)ir->o) {
/* Only have to deal with constants that can occur in stack slots. */
case IR_KPRI: tr = TREF_PRI(irt_type(ir->t)); break;
case IR_KINT: tr = lj_ir_kint(J, ir->i); break;
case IR_KGC: tr = lj_ir_kgc(J, ir_kgc(ir), irt_t(ir->t)); break;
case IR_KNUM: tr = lj_ir_knum_addr(J, ir_knum(ir)); break;
case IR_KPTR: tr = lj_ir_kptr(J, ir_kptr(ir)); break; /* Continuation. */
/* Inherited SLOADs don't need a guard or type check. */
case IR_SLOAD:
tr = emitir_raw(ir->ot & ~IRT_GUARD, s,
(ir->op2&IRSLOAD_READONLY) | IRSLOAD_INHERIT|IRSLOAD_PARENT);
break;
/* Parent refs are already typed and don't need a guard. */
default:
tr = emitir_raw(IRT(IR_SLOAD, irt_type(ir->t)), s,
IRSLOAD_INHERIT|IRSLOAD_PARENT);
break;
}
setslot:
J->slot[s] = tr | (sn&(SNAP_CONT|SNAP_FRAME)); /* Same as TREF_* flags. */
if ((sn & SNAP_FRAME))
J->baseslot = s+1;
}
J->base = J->slot + J->baseslot;
J->maxslot = snap->nslots - J->baseslot;
J->framedepth = snap->depth;
lj_snap_add(J);
}
/* Setup for recording a new trace. */
void lj_record_setup(jit_State *J)
{
uint32_t i;
/* Initialize state related to current trace. */
memset(J->slot, 0, sizeof(J->slot));
memset(J->chain, 0, sizeof(J->chain));
memset(J->bpropcache, 0, sizeof(J->bpropcache));
J->scev.idx = REF_NIL;
J->baseslot = 1; /* Invoking function is at base[-1]. */
J->base = J->slot + J->baseslot;
J->maxslot = 0;
J->framedepth = 0;
J->retdepth = 0;
J->instunroll = J->param[JIT_P_instunroll];
J->loopunroll = J->param[JIT_P_loopunroll];
J->tailcalled = 0;
J->loopref = 0;
J->bc_min = NULL; /* Means no limit. */
J->bc_extent = ~(MSize)0;
/* Emit instructions for fixed references. Also triggers initial IR alloc. */
emitir_raw(IRT(IR_BASE, IRT_PTR), J->parent, J->exitno);
for (i = 0; i <= 2; i++) {
IRIns *ir = IR(REF_NIL-i);
ir->i = 0;
ir->t.irt = (uint8_t)(IRT_NIL+i);
ir->o = IR_KPRI;
ir->prev = 0;
}
J->cur.nk = REF_TRUE;
J->startpc = J->pc;
if (J->parent) { /* Side trace. */
GCtrace *T = traceref(J, J->parent);
TraceNo root = T->root ? T->root : J->parent;
J->cur.root = (uint16_t)root;
J->cur.startins = BCINS_AD(BC_JMP, 0, 0);
/* Check whether we could at least potentially form an extra loop. */
if (J->exitno == 0 && T->snap[0].nent == 0) {
/* We can narrow a FORL for some side traces, too. */
if (J->pc > proto_bc(J->pt) && bc_op(J->pc[-1]) == BC_JFORI &&
bc_d(J->pc[bc_j(J->pc[-1])-1]) == root) {
lj_snap_add(J);
rec_setup_forl(J, J->pc-1);
goto sidecheck;
}
} else {
J->startpc = NULL; /* Prevent forming an extra loop. */
}
rec_setup_side(J, T);
sidecheck:
if (traceref(J, J->cur.root)->nchild >= J->param[JIT_P_maxside] ||
T->snap[J->exitno].count >= J->param[JIT_P_hotexit] +
J->param[JIT_P_tryside])
rec_stop(J, TRACE_INTERP);
} else { /* Root trace. */
J->cur.root = 0;
J->cur.startins = *J->pc;
J->pc = rec_setup_root(J);
/* Note: the loop instruction itself is recorded at the end and not
** at the start! So snapshot #0 needs to point to the *next* instruction.
*/
lj_snap_add(J);
if (bc_op(J->cur.startins) == BC_FORL)
rec_setup_forl(J, J->pc-1);
if (1 + J->pt->framesize >= LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
}
}
#undef IR
#undef emitir_raw
#undef emitir
#endif