mirror of
https://github.com/LuaJIT/LuaJIT.git
synced 2025-02-07 15:14:08 +00:00
87ae18af97
Follow-up to #1247.
687 lines
19 KiB
C
687 lines
19 KiB
C
/*
|
|
** Table handling.
|
|
** Copyright (C) 2005-2023 Mike Pall. See Copyright Notice in luajit.h
|
|
**
|
|
** Major portions taken verbatim or adapted from the Lua interpreter.
|
|
** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#define lj_tab_c
|
|
#define LUA_CORE
|
|
|
|
#include "lj_obj.h"
|
|
#include "lj_gc.h"
|
|
#include "lj_err.h"
|
|
#include "lj_tab.h"
|
|
|
|
/* -- Object hashing ------------------------------------------------------ */
|
|
|
|
/* Hash an arbitrary key and return its anchor position in the hash table. */
|
|
static Node *hashkey(const GCtab *t, cTValue *key)
|
|
{
|
|
lj_assertX(!tvisint(key), "attempt to hash integer");
|
|
if (tvisstr(key))
|
|
return hashstr(t, strV(key));
|
|
else if (tvisnum(key))
|
|
return hashnum(t, key);
|
|
else if (tvisbool(key))
|
|
return hashmask(t, boolV(key));
|
|
else
|
|
return hashgcref(t, key->gcr);
|
|
/* Only hash 32 bits of lightuserdata on a 64 bit CPU. Good enough? */
|
|
}
|
|
|
|
/* -- Table creation and destruction -------------------------------------- */
|
|
|
|
/* Create new hash part for table. */
|
|
static LJ_AINLINE void newhpart(lua_State *L, GCtab *t, uint32_t hbits)
|
|
{
|
|
uint32_t hsize;
|
|
Node *node;
|
|
lj_assertL(hbits != 0, "zero hash size");
|
|
if (hbits > LJ_MAX_HBITS)
|
|
lj_err_msg(L, LJ_ERR_TABOV);
|
|
hsize = 1u << hbits;
|
|
node = lj_mem_newvec(L, hsize, Node);
|
|
setmref(t->node, node);
|
|
setfreetop(t, node, &node[hsize]);
|
|
t->hmask = hsize-1;
|
|
}
|
|
|
|
/*
|
|
** Q: Why all of these copies of t->hmask, t->node etc. to local variables?
|
|
** A: Because alias analysis for C is _really_ tough.
|
|
** Even state-of-the-art C compilers won't produce good code without this.
|
|
*/
|
|
|
|
/* Clear hash part of table. */
|
|
static LJ_AINLINE void clearhpart(GCtab *t)
|
|
{
|
|
uint32_t i, hmask = t->hmask;
|
|
Node *node = noderef(t->node);
|
|
lj_assertX(t->hmask != 0, "empty hash part");
|
|
for (i = 0; i <= hmask; i++) {
|
|
Node *n = &node[i];
|
|
setmref(n->next, NULL);
|
|
setnilV(&n->key);
|
|
setnilV(&n->val);
|
|
}
|
|
}
|
|
|
|
/* Clear array part of table. */
|
|
static LJ_AINLINE void clearapart(GCtab *t)
|
|
{
|
|
uint32_t i, asize = t->asize;
|
|
TValue *array = tvref(t->array);
|
|
for (i = 0; i < asize; i++)
|
|
setnilV(&array[i]);
|
|
}
|
|
|
|
/* Create a new table. Note: the slots are not initialized (yet). */
|
|
static GCtab *newtab(lua_State *L, uint32_t asize, uint32_t hbits)
|
|
{
|
|
GCtab *t;
|
|
/* First try to colocate the array part. */
|
|
if (LJ_MAX_COLOSIZE != 0 && asize > 0 && asize <= LJ_MAX_COLOSIZE) {
|
|
Node *nilnode;
|
|
lj_assertL((sizeof(GCtab) & 7) == 0, "bad GCtab size");
|
|
t = (GCtab *)lj_mem_newgco(L, sizetabcolo(asize));
|
|
t->gct = ~LJ_TTAB;
|
|
t->nomm = (uint8_t)~0;
|
|
t->colo = (int8_t)asize;
|
|
setmref(t->array, (TValue *)((char *)t + sizeof(GCtab)));
|
|
setgcrefnull(t->metatable);
|
|
t->asize = asize;
|
|
t->hmask = 0;
|
|
nilnode = &G(L)->nilnode;
|
|
setmref(t->node, nilnode);
|
|
#if LJ_GC64
|
|
setmref(t->freetop, nilnode);
|
|
#endif
|
|
} else { /* Otherwise separately allocate the array part. */
|
|
Node *nilnode;
|
|
t = lj_mem_newobj(L, GCtab);
|
|
t->gct = ~LJ_TTAB;
|
|
t->nomm = (uint8_t)~0;
|
|
t->colo = 0;
|
|
setmref(t->array, NULL);
|
|
setgcrefnull(t->metatable);
|
|
t->asize = 0; /* In case the array allocation fails. */
|
|
t->hmask = 0;
|
|
nilnode = &G(L)->nilnode;
|
|
setmref(t->node, nilnode);
|
|
#if LJ_GC64
|
|
setmref(t->freetop, nilnode);
|
|
#endif
|
|
if (asize > 0) {
|
|
if (asize > LJ_MAX_ASIZE)
|
|
lj_err_msg(L, LJ_ERR_TABOV);
|
|
setmref(t->array, lj_mem_newvec(L, asize, TValue));
|
|
t->asize = asize;
|
|
}
|
|
}
|
|
if (hbits)
|
|
newhpart(L, t, hbits);
|
|
return t;
|
|
}
|
|
|
|
/* Create a new table.
|
|
**
|
|
** IMPORTANT NOTE: The API differs from lua_createtable()!
|
|
**
|
|
** The array size is non-inclusive. E.g. asize=128 creates array slots
|
|
** for 0..127, but not for 128. If you need slots 1..128, pass asize=129
|
|
** (slot 0 is wasted in this case).
|
|
**
|
|
** The hash size is given in hash bits. hbits=0 means no hash part.
|
|
** hbits=1 creates 2 hash slots, hbits=2 creates 4 hash slots and so on.
|
|
*/
|
|
GCtab *lj_tab_new(lua_State *L, uint32_t asize, uint32_t hbits)
|
|
{
|
|
GCtab *t = newtab(L, asize, hbits);
|
|
clearapart(t);
|
|
if (t->hmask > 0) clearhpart(t);
|
|
return t;
|
|
}
|
|
|
|
/* The API of this function conforms to lua_createtable(). */
|
|
GCtab *lj_tab_new_ah(lua_State *L, int32_t a, int32_t h)
|
|
{
|
|
return lj_tab_new(L, (uint32_t)(a > 0 ? a+1 : 0), hsize2hbits(h));
|
|
}
|
|
|
|
#if LJ_HASJIT
|
|
GCtab * LJ_FASTCALL lj_tab_new1(lua_State *L, uint32_t ahsize)
|
|
{
|
|
GCtab *t = newtab(L, ahsize & 0xffffff, ahsize >> 24);
|
|
clearapart(t);
|
|
if (t->hmask > 0) clearhpart(t);
|
|
return t;
|
|
}
|
|
#endif
|
|
|
|
/* Duplicate a table. */
|
|
GCtab * LJ_FASTCALL lj_tab_dup(lua_State *L, const GCtab *kt)
|
|
{
|
|
GCtab *t;
|
|
uint32_t asize, hmask;
|
|
t = newtab(L, kt->asize, kt->hmask > 0 ? lj_fls(kt->hmask)+1 : 0);
|
|
lj_assertL(kt->asize == t->asize && kt->hmask == t->hmask,
|
|
"mismatched size of table and template");
|
|
t->nomm = 0; /* Keys with metamethod names may be present. */
|
|
asize = kt->asize;
|
|
if (asize > 0) {
|
|
TValue *array = tvref(t->array);
|
|
TValue *karray = tvref(kt->array);
|
|
if (asize < 64) { /* An inlined loop beats memcpy for < 512 bytes. */
|
|
uint32_t i;
|
|
for (i = 0; i < asize; i++)
|
|
copyTV(L, &array[i], &karray[i]);
|
|
} else {
|
|
memcpy(array, karray, asize*sizeof(TValue));
|
|
}
|
|
}
|
|
hmask = kt->hmask;
|
|
if (hmask > 0) {
|
|
uint32_t i;
|
|
Node *node = noderef(t->node);
|
|
Node *knode = noderef(kt->node);
|
|
ptrdiff_t d = (char *)node - (char *)knode;
|
|
setfreetop(t, node, (Node *)((char *)getfreetop(kt, knode) + d));
|
|
for (i = 0; i <= hmask; i++) {
|
|
Node *kn = &knode[i];
|
|
Node *n = &node[i];
|
|
Node *next = nextnode(kn);
|
|
/* Don't use copyTV here, since it asserts on a copy of a dead key. */
|
|
n->val = kn->val; n->key = kn->key;
|
|
setmref(n->next, next == NULL? next : (Node *)((char *)next + d));
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* Clear a table. */
|
|
void LJ_FASTCALL lj_tab_clear(GCtab *t)
|
|
{
|
|
clearapart(t);
|
|
if (t->hmask > 0) {
|
|
Node *node = noderef(t->node);
|
|
setfreetop(t, node, &node[t->hmask+1]);
|
|
clearhpart(t);
|
|
}
|
|
}
|
|
|
|
/* Free a table. */
|
|
void LJ_FASTCALL lj_tab_free(global_State *g, GCtab *t)
|
|
{
|
|
if (t->hmask > 0)
|
|
lj_mem_freevec(g, noderef(t->node), t->hmask+1, Node);
|
|
if (t->asize > 0 && LJ_MAX_COLOSIZE != 0 && t->colo <= 0)
|
|
lj_mem_freevec(g, tvref(t->array), t->asize, TValue);
|
|
if (LJ_MAX_COLOSIZE != 0 && t->colo)
|
|
lj_mem_free(g, t, sizetabcolo((uint32_t)t->colo & 0x7f));
|
|
else
|
|
lj_mem_freet(g, t);
|
|
}
|
|
|
|
/* -- Table resizing ------------------------------------------------------ */
|
|
|
|
/* Resize a table to fit the new array/hash part sizes. */
|
|
void lj_tab_resize(lua_State *L, GCtab *t, uint32_t asize, uint32_t hbits)
|
|
{
|
|
Node *oldnode = noderef(t->node);
|
|
uint32_t oldasize = t->asize;
|
|
uint32_t oldhmask = t->hmask;
|
|
if (asize > oldasize) { /* Array part grows? */
|
|
TValue *array;
|
|
uint32_t i;
|
|
if (asize > LJ_MAX_ASIZE)
|
|
lj_err_msg(L, LJ_ERR_TABOV);
|
|
if (LJ_MAX_COLOSIZE != 0 && t->colo > 0) {
|
|
/* A colocated array must be separated and copied. */
|
|
TValue *oarray = tvref(t->array);
|
|
array = lj_mem_newvec(L, asize, TValue);
|
|
t->colo = (int8_t)(t->colo | 0x80); /* Mark as separated (colo < 0). */
|
|
for (i = 0; i < oldasize; i++)
|
|
copyTV(L, &array[i], &oarray[i]);
|
|
} else {
|
|
array = (TValue *)lj_mem_realloc(L, tvref(t->array),
|
|
oldasize*sizeof(TValue), asize*sizeof(TValue));
|
|
}
|
|
setmref(t->array, array);
|
|
t->asize = asize;
|
|
for (i = oldasize; i < asize; i++) /* Clear newly allocated slots. */
|
|
setnilV(&array[i]);
|
|
}
|
|
/* Create new (empty) hash part. */
|
|
if (hbits) {
|
|
newhpart(L, t, hbits);
|
|
clearhpart(t);
|
|
} else {
|
|
global_State *g = G(L);
|
|
setmref(t->node, &g->nilnode);
|
|
#if LJ_GC64
|
|
setmref(t->freetop, &g->nilnode);
|
|
#endif
|
|
t->hmask = 0;
|
|
}
|
|
if (asize < oldasize) { /* Array part shrinks? */
|
|
TValue *array = tvref(t->array);
|
|
uint32_t i;
|
|
t->asize = asize; /* Note: This 'shrinks' even colocated arrays. */
|
|
for (i = asize; i < oldasize; i++) /* Reinsert old array values. */
|
|
if (!tvisnil(&array[i]))
|
|
copyTV(L, lj_tab_setinth(L, t, (int32_t)i), &array[i]);
|
|
/* Physically shrink only separated arrays. */
|
|
if (LJ_MAX_COLOSIZE != 0 && t->colo <= 0)
|
|
setmref(t->array, lj_mem_realloc(L, array,
|
|
oldasize*sizeof(TValue), asize*sizeof(TValue)));
|
|
}
|
|
if (oldhmask > 0) { /* Reinsert pairs from old hash part. */
|
|
global_State *g;
|
|
uint32_t i;
|
|
for (i = 0; i <= oldhmask; i++) {
|
|
Node *n = &oldnode[i];
|
|
if (!tvisnil(&n->val))
|
|
copyTV(L, lj_tab_set(L, t, &n->key), &n->val);
|
|
}
|
|
g = G(L);
|
|
lj_mem_freevec(g, oldnode, oldhmask+1, Node);
|
|
}
|
|
}
|
|
|
|
static uint32_t countint(cTValue *key, uint32_t *bins)
|
|
{
|
|
lj_assertX(!tvisint(key), "bad integer key");
|
|
if (tvisnum(key)) {
|
|
lua_Number nk = numV(key);
|
|
int32_t k = lj_num2int(nk);
|
|
if ((uint32_t)k < LJ_MAX_ASIZE && nk == (lua_Number)k) {
|
|
bins[(k > 2 ? lj_fls((uint32_t)(k-1)) : 0)]++;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t countarray(const GCtab *t, uint32_t *bins)
|
|
{
|
|
uint32_t na, b, i;
|
|
if (t->asize == 0) return 0;
|
|
for (na = i = b = 0; b < LJ_MAX_ABITS; b++) {
|
|
uint32_t n, top = 2u << b;
|
|
TValue *array;
|
|
if (top >= t->asize) {
|
|
top = t->asize-1;
|
|
if (i > top)
|
|
break;
|
|
}
|
|
array = tvref(t->array);
|
|
for (n = 0; i <= top; i++)
|
|
if (!tvisnil(&array[i]))
|
|
n++;
|
|
bins[b] += n;
|
|
na += n;
|
|
}
|
|
return na;
|
|
}
|
|
|
|
static uint32_t counthash(const GCtab *t, uint32_t *bins, uint32_t *narray)
|
|
{
|
|
uint32_t total, na, i, hmask = t->hmask;
|
|
Node *node = noderef(t->node);
|
|
for (total = na = 0, i = 0; i <= hmask; i++) {
|
|
Node *n = &node[i];
|
|
if (!tvisnil(&n->val)) {
|
|
na += countint(&n->key, bins);
|
|
total++;
|
|
}
|
|
}
|
|
*narray += na;
|
|
return total;
|
|
}
|
|
|
|
static uint32_t bestasize(uint32_t bins[], uint32_t *narray)
|
|
{
|
|
uint32_t b, sum, na = 0, sz = 0, nn = *narray;
|
|
for (b = 0, sum = 0; 2*nn > (1u<<b) && sum != nn; b++)
|
|
if (bins[b] > 0 && 2*(sum += bins[b]) > (1u<<b)) {
|
|
sz = (2u<<b)+1;
|
|
na = sum;
|
|
}
|
|
*narray = sz;
|
|
return na;
|
|
}
|
|
|
|
static void rehashtab(lua_State *L, GCtab *t, cTValue *ek)
|
|
{
|
|
uint32_t bins[LJ_MAX_ABITS];
|
|
uint32_t total, asize, na, i;
|
|
for (i = 0; i < LJ_MAX_ABITS; i++) bins[i] = 0;
|
|
asize = countarray(t, bins);
|
|
total = 1 + asize;
|
|
total += counthash(t, bins, &asize);
|
|
asize += countint(ek, bins);
|
|
na = bestasize(bins, &asize);
|
|
total -= na;
|
|
lj_tab_resize(L, t, asize, hsize2hbits(total));
|
|
}
|
|
|
|
void lj_tab_reasize(lua_State *L, GCtab *t, uint32_t nasize)
|
|
{
|
|
lj_tab_resize(L, t, nasize+1, t->hmask > 0 ? lj_fls(t->hmask)+1 : 0);
|
|
}
|
|
|
|
/* -- Table getters ------------------------------------------------------- */
|
|
|
|
cTValue * LJ_FASTCALL lj_tab_getinth(GCtab *t, int32_t key)
|
|
{
|
|
TValue k;
|
|
Node *n;
|
|
k.n = (lua_Number)key;
|
|
n = hashnum(t, &k);
|
|
do {
|
|
if (tvisnum(&n->key) && n->key.n == k.n)
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
return NULL;
|
|
}
|
|
|
|
cTValue *lj_tab_getstr(GCtab *t, const GCstr *key)
|
|
{
|
|
Node *n = hashstr(t, key);
|
|
do {
|
|
if (tvisstr(&n->key) && strV(&n->key) == key)
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
return NULL;
|
|
}
|
|
|
|
cTValue *lj_tab_get(lua_State *L, GCtab *t, cTValue *key)
|
|
{
|
|
if (tvisstr(key)) {
|
|
cTValue *tv = lj_tab_getstr(t, strV(key));
|
|
if (tv)
|
|
return tv;
|
|
} else if (tvisint(key)) {
|
|
cTValue *tv = lj_tab_getint(t, intV(key));
|
|
if (tv)
|
|
return tv;
|
|
} else if (tvisnum(key)) {
|
|
lua_Number nk = numV(key);
|
|
int32_t k = lj_num2int(nk);
|
|
if (nk == (lua_Number)k) {
|
|
cTValue *tv = lj_tab_getint(t, k);
|
|
if (tv)
|
|
return tv;
|
|
} else {
|
|
goto genlookup; /* Else use the generic lookup. */
|
|
}
|
|
} else if (!tvisnil(key)) {
|
|
Node *n;
|
|
genlookup:
|
|
n = hashkey(t, key);
|
|
do {
|
|
if (lj_obj_equal(&n->key, key))
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
}
|
|
return niltv(L);
|
|
}
|
|
|
|
/* -- Table setters ------------------------------------------------------- */
|
|
|
|
/* Insert new key. Use Brent's variation to optimize the chain length. */
|
|
TValue *lj_tab_newkey(lua_State *L, GCtab *t, cTValue *key)
|
|
{
|
|
Node *n = hashkey(t, key);
|
|
if (!tvisnil(&n->val) || t->hmask == 0) {
|
|
Node *nodebase = noderef(t->node);
|
|
Node *collide, *freenode = getfreetop(t, nodebase);
|
|
lj_assertL(freenode >= nodebase && freenode <= nodebase+t->hmask+1,
|
|
"bad freenode");
|
|
do {
|
|
if (freenode == nodebase) { /* No free node found? */
|
|
rehashtab(L, t, key); /* Rehash table. */
|
|
return lj_tab_set(L, t, key); /* Retry key insertion. */
|
|
}
|
|
} while (!tvisnil(&(--freenode)->key));
|
|
setfreetop(t, nodebase, freenode);
|
|
lj_assertL(freenode != &G(L)->nilnode, "store to fallback hash");
|
|
collide = hashkey(t, &n->key);
|
|
if (collide != n) { /* Colliding node not the main node? */
|
|
while (noderef(collide->next) != n) /* Find predecessor. */
|
|
collide = nextnode(collide);
|
|
setmref(collide->next, freenode); /* Relink chain. */
|
|
/* Copy colliding node into free node and free main node. */
|
|
freenode->val = n->val;
|
|
freenode->key = n->key;
|
|
freenode->next = n->next;
|
|
setmref(n->next, NULL);
|
|
setnilV(&n->val);
|
|
/* Rechain pseudo-resurrected string keys with colliding hashes. */
|
|
while (nextnode(freenode)) {
|
|
Node *nn = nextnode(freenode);
|
|
if (!tvisnil(&nn->val) && hashkey(t, &nn->key) == n) {
|
|
freenode->next = nn->next;
|
|
nn->next = n->next;
|
|
setmref(n->next, nn);
|
|
/*
|
|
** Rechaining a resurrected string key creates a new dilemma:
|
|
** Another string key may have originally been resurrected via
|
|
** _any_ of the previous nodes as a chain anchor. Including
|
|
** a node that had to be moved, which makes them unreachable.
|
|
** It's not feasible to check for all previous nodes, so rechain
|
|
** any string key that's currently in a non-main positions.
|
|
*/
|
|
while ((nn = nextnode(freenode))) {
|
|
if (!tvisnil(&nn->val)) {
|
|
Node *mn = hashkey(t, &nn->key);
|
|
if (mn != freenode && mn != nn) {
|
|
freenode->next = nn->next;
|
|
nn->next = mn->next;
|
|
setmref(mn->next, nn);
|
|
} else {
|
|
freenode = nn;
|
|
}
|
|
} else {
|
|
freenode = nn;
|
|
}
|
|
}
|
|
break;
|
|
} else {
|
|
freenode = nn;
|
|
}
|
|
}
|
|
} else { /* Otherwise use free node. */
|
|
setmrefr(freenode->next, n->next); /* Insert into chain. */
|
|
setmref(n->next, freenode);
|
|
n = freenode;
|
|
}
|
|
}
|
|
n->key.u64 = key->u64;
|
|
if (LJ_UNLIKELY(tvismzero(&n->key)))
|
|
n->key.u64 = 0;
|
|
lj_gc_anybarriert(L, t);
|
|
lj_assertL(tvisnil(&n->val), "new hash slot is not empty");
|
|
return &n->val;
|
|
}
|
|
|
|
TValue *lj_tab_setinth(lua_State *L, GCtab *t, int32_t key)
|
|
{
|
|
TValue k;
|
|
Node *n;
|
|
k.n = (lua_Number)key;
|
|
n = hashnum(t, &k);
|
|
do {
|
|
if (tvisnum(&n->key) && n->key.n == k.n)
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
return lj_tab_newkey(L, t, &k);
|
|
}
|
|
|
|
TValue *lj_tab_setstr(lua_State *L, GCtab *t, const GCstr *key)
|
|
{
|
|
TValue k;
|
|
Node *n = hashstr(t, key);
|
|
do {
|
|
if (tvisstr(&n->key) && strV(&n->key) == key)
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
setstrV(L, &k, key);
|
|
return lj_tab_newkey(L, t, &k);
|
|
}
|
|
|
|
TValue *lj_tab_set(lua_State *L, GCtab *t, cTValue *key)
|
|
{
|
|
Node *n;
|
|
t->nomm = 0; /* Invalidate negative metamethod cache. */
|
|
if (tvisstr(key)) {
|
|
return lj_tab_setstr(L, t, strV(key));
|
|
} else if (tvisint(key)) {
|
|
return lj_tab_setint(L, t, intV(key));
|
|
} else if (tvisnum(key)) {
|
|
lua_Number nk = numV(key);
|
|
int32_t k = lj_num2int(nk);
|
|
if (nk == (lua_Number)k)
|
|
return lj_tab_setint(L, t, k);
|
|
if (tvisnan(key))
|
|
lj_err_msg(L, LJ_ERR_NANIDX);
|
|
/* Else use the generic lookup. */
|
|
} else if (tvisnil(key)) {
|
|
lj_err_msg(L, LJ_ERR_NILIDX);
|
|
}
|
|
n = hashkey(t, key);
|
|
do {
|
|
if (lj_obj_equal(&n->key, key))
|
|
return &n->val;
|
|
} while ((n = nextnode(n)));
|
|
return lj_tab_newkey(L, t, key);
|
|
}
|
|
|
|
/* -- Table traversal ----------------------------------------------------- */
|
|
|
|
/* Table traversal indexes:
|
|
**
|
|
** Array key index: [0 .. t->asize-1]
|
|
** Hash key index: [t->asize .. t->asize+t->hmask]
|
|
** Invalid key: ~0
|
|
*/
|
|
|
|
/* Get the successor traversal index of a key. */
|
|
uint32_t LJ_FASTCALL lj_tab_keyindex(GCtab *t, cTValue *key)
|
|
{
|
|
TValue tmp;
|
|
if (tvisint(key)) {
|
|
int32_t k = intV(key);
|
|
if ((uint32_t)k < t->asize)
|
|
return (uint32_t)k + 1;
|
|
setnumV(&tmp, (lua_Number)k);
|
|
key = &tmp;
|
|
} else if (tvisnum(key)) {
|
|
lua_Number nk = numV(key);
|
|
int32_t k = lj_num2int(nk);
|
|
if ((uint32_t)k < t->asize && nk == (lua_Number)k)
|
|
return (uint32_t)k + 1;
|
|
}
|
|
if (!tvisnil(key)) {
|
|
Node *n = hashkey(t, key);
|
|
do {
|
|
if (lj_obj_equal(&n->key, key))
|
|
return t->asize + (uint32_t)((n+1) - noderef(t->node));
|
|
} while ((n = nextnode(n)));
|
|
if (key->u32.hi == LJ_KEYINDEX) /* Despecialized ITERN while running. */
|
|
return key->u32.lo;
|
|
return ~0u; /* Invalid key to next. */
|
|
}
|
|
return 0; /* A nil key starts the traversal. */
|
|
}
|
|
|
|
/* Get the next key/value pair of a table traversal. */
|
|
int lj_tab_next(GCtab *t, cTValue *key, TValue *o)
|
|
{
|
|
uint32_t idx = lj_tab_keyindex(t, key); /* Find successor index of key. */
|
|
/* First traverse the array part. */
|
|
for (; idx < t->asize; idx++) {
|
|
cTValue *a = arrayslot(t, idx);
|
|
if (LJ_LIKELY(!tvisnil(a))) {
|
|
setintV(o, idx);
|
|
o[1] = *a;
|
|
return 1;
|
|
}
|
|
}
|
|
idx -= t->asize;
|
|
/* Then traverse the hash part. */
|
|
for (; idx <= t->hmask; idx++) {
|
|
Node *n = &noderef(t->node)[idx];
|
|
if (!tvisnil(&n->val)) {
|
|
o[0] = n->key;
|
|
o[1] = n->val;
|
|
return 1;
|
|
}
|
|
}
|
|
return (int32_t)idx < 0 ? -1 : 0; /* Invalid key or end of traversal. */
|
|
}
|
|
|
|
/* -- Table length calculation -------------------------------------------- */
|
|
|
|
/* Compute table length. Slow path with mixed array/hash lookups. */
|
|
LJ_NOINLINE static MSize tab_len_slow(GCtab *t, size_t hi)
|
|
{
|
|
cTValue *tv;
|
|
size_t lo = hi;
|
|
hi++;
|
|
/* Widening search for an upper bound. */
|
|
while ((tv = lj_tab_getint(t, (int32_t)hi)) && !tvisnil(tv)) {
|
|
lo = hi;
|
|
hi += hi;
|
|
if (hi > (size_t)(INT_MAX-2)) { /* Punt and do a linear search. */
|
|
lo = 1;
|
|
while ((tv = lj_tab_getint(t, (int32_t)lo)) && !tvisnil(tv)) lo++;
|
|
return (MSize)(lo - 1);
|
|
}
|
|
}
|
|
/* Binary search to find a non-nil to nil transition. */
|
|
while (hi - lo > 1) {
|
|
size_t mid = (lo+hi) >> 1;
|
|
cTValue *tvb = lj_tab_getint(t, (int32_t)mid);
|
|
if (tvb && !tvisnil(tvb)) lo = mid; else hi = mid;
|
|
}
|
|
return (MSize)lo;
|
|
}
|
|
|
|
/* Compute table length. Fast path. */
|
|
MSize LJ_FASTCALL lj_tab_len(GCtab *t)
|
|
{
|
|
size_t hi = (size_t)t->asize;
|
|
if (hi) hi--;
|
|
/* In a growing array the last array element is very likely nil. */
|
|
if (hi > 0 && LJ_LIKELY(tvisnil(arrayslot(t, hi)))) {
|
|
/* Binary search to find a non-nil to nil transition in the array. */
|
|
size_t lo = 0;
|
|
while (hi - lo > 1) {
|
|
size_t mid = (lo+hi) >> 1;
|
|
if (tvisnil(arrayslot(t, mid))) hi = mid; else lo = mid;
|
|
}
|
|
return (MSize)lo;
|
|
}
|
|
/* Without a hash part, there's an implicit nil after the last element. */
|
|
return t->hmask ? tab_len_slow(t, hi) : (MSize)hi;
|
|
}
|
|
|
|
#if LJ_HASJIT
|
|
/* Verify hinted table length or compute it. */
|
|
MSize LJ_FASTCALL lj_tab_len_hint(GCtab *t, size_t hint)
|
|
{
|
|
size_t asize = (size_t)t->asize;
|
|
cTValue *tv = arrayslot(t, hint);
|
|
if (LJ_LIKELY(hint+1 < asize)) {
|
|
if (LJ_LIKELY(!tvisnil(tv) && tvisnil(tv+1))) return (MSize)hint;
|
|
} else if (hint+1 <= asize && LJ_LIKELY(t->hmask == 0) && !tvisnil(tv)) {
|
|
return (MSize)hint;
|
|
}
|
|
return lj_tab_len(t);
|
|
}
|
|
#endif
|
|
|