mikepaul-LuaJIT/src/lj_record.c
2010-01-27 01:57:15 +01:00

2305 lines
74 KiB
C

/*
** Trace recorder (bytecode -> SSA IR).
** Copyright (C) 2005-2010 Mike Pall. See Copyright Notice in luajit.h
*/
#define lj_record_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT
#include "lj_gc.h"
#include "lj_err.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_state.h"
#include "lj_frame.h"
#include "lj_bc.h"
#include "lj_ff.h"
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_iropt.h"
#include "lj_trace.h"
#include "lj_record.h"
#include "lj_snap.h"
#include "lj_asm.h"
#include "lj_dispatch.h"
#include "lj_vm.h"
/* Some local macros to save typing. Undef'd at the end. */
#define IR(ref) (&J->cur.ir[(ref)])
/* Pass IR on to next optimization in chain (FOLD). */
#define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
/* Emit raw IR without passing through optimizations. */
#define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
/* Context for recording an indexed load/store. */
typedef struct RecordIndex {
TValue tabv; /* Runtime value of table (or indexed object). */
TValue keyv; /* Runtime value of key. */
TValue valv; /* Runtime value of stored value. */
TValue mobjv; /* Runtime value of metamethod object. */
GCtab *mtv; /* Runtime value of metatable object. */
cTValue *oldv; /* Runtime value of previously stored value. */
TRef tab; /* Table (or indexed object) reference. */
TRef key; /* Key reference. */
TRef val; /* Value reference for a store or 0 for a load. */
TRef mt; /* Metatable reference. */
TRef mobj; /* Metamethod object reference. */
int idxchain; /* Index indirections left or 0 for raw lookup. */
} RecordIndex;
/* Requested results from rec_call(). */
enum {
/* Non-negative numbers are number of requested results. */
CALLRES_MULTI = -1, /* Return multiple results. */
CALLRES_TAILCALL = -2, /* Tail call. */
CALLRES_PENDING = -3, /* Call is pending, no results yet. */
CALLRES_CONT = -4 /* Continuation call. */
};
/* Forward declarations. */
static TRef rec_idx(jit_State *J, RecordIndex *ix);
static int rec_call(jit_State *J, BCReg func, int cres, int nargs);
/* -- Sanity checks ------------------------------------------------------- */
#ifdef LUA_USE_ASSERT
/* Sanity check the whole IR -- sloooow. */
static void rec_check_ir(jit_State *J)
{
IRRef i, nins = J->cur.nins, nk = J->cur.nk;
lua_assert(nk <= REF_BIAS && nins >= REF_BIAS && nins < 65536);
for (i = nins-1; i >= nk; i--) {
IRIns *ir = IR(i);
uint32_t mode = lj_ir_mode[ir->o];
IRRef op1 = ir->op1;
IRRef op2 = ir->op2;
switch (irm_op1(mode)) {
case IRMnone: lua_assert(op1 == 0); break;
case IRMref: lua_assert(op1 >= nk);
lua_assert(i >= REF_BIAS ? op1 < i : op1 > i); break;
case IRMlit: break;
case IRMcst: lua_assert(i < REF_BIAS); continue;
}
switch (irm_op2(mode)) {
case IRMnone: lua_assert(op2 == 0); break;
case IRMref: lua_assert(op2 >= nk);
lua_assert(i >= REF_BIAS ? op2 < i : op2 > i); break;
case IRMlit: break;
case IRMcst: lua_assert(0); break;
}
if (ir->prev) {
lua_assert(ir->prev >= nk);
lua_assert(i >= REF_BIAS ? ir->prev < i : ir->prev > i);
lua_assert(IR(ir->prev)->o == ir->o);
}
}
}
/* Sanity check the slots. */
static void rec_check_slots(jit_State *J)
{
BCReg s, nslots = J->baseslot + J->maxslot;
lua_assert(J->baseslot >= 1 && J->baseslot < LJ_MAX_JSLOTS);
lua_assert(nslots < LJ_MAX_JSLOTS);
for (s = 0; s < nslots; s++) {
TRef tr = J->slot[s];
if (tr) {
IRRef ref = tref_ref(tr);
lua_assert(ref >= J->cur.nk && ref < J->cur.nins);
lua_assert(irt_t(IR(ref)->t) == tref_t(tr));
}
}
}
#endif
/* -- Type handling and specialization ------------------------------------ */
/* Note: these functions return tagged references (TRef). */
/* Specialize a slot to a specific type. Note: slot can be negative! */
static TRef sloadt(jit_State *J, int32_t slot, IRType t, int mode)
{
/* Caller may set IRT_GUARD in t. */
TRef ref = emitir_raw(IRT(IR_SLOAD, t), (int32_t)J->baseslot+slot, mode);
J->base[slot] = ref;
return ref;
}
/* Specialize a slot to the runtime type. Note: slot can be negative! */
static TRef sload(jit_State *J, int32_t slot)
{
IRType t = itype2irt(&J->L->base[slot]);
TRef ref = emitir_raw(IRTG(IR_SLOAD, t), (int32_t)J->baseslot+slot,
IRSLOAD_TYPECHECK);
if (irtype_ispri(t)) ref = TREF_PRI(t); /* Canonicalize primitive refs. */
J->base[slot] = ref;
return ref;
}
/* Get TRef from slot. Load slot and specialize if not done already. */
#define getslot(J, s) (J->base[(s)] ? J->base[(s)] : sload(J, (int32_t)(s)))
/* Get TRef for current function. */
static TRef getcurrf(jit_State *J)
{
if (J->base[-1]) {
IRIns *ir = IR(tref_ref(J->base[-1]));
if (ir->o == IR_FRAME) /* Shortcut if already specialized. */
return TREF(ir->op2, IRT_FUNC); /* Return TRef of KFUNC. */
return J->base[-1];
} else {
lua_assert(J->baseslot == 1);
return sloadt(J, -1, IRT_FUNC, IRSLOAD_READONLY);
}
}
/* Compare for raw object equality.
** Returns 0 if the objects are the same.
** Returns 1 if they are different, but the same type.
** Returns 2 for two different types.
** Comparisons between primitives always return 1 -- no caller cares about it.
*/
static int rec_objcmp(jit_State *J, TRef a, TRef b, cTValue *av, cTValue *bv)
{
int diff = !lj_obj_equal(av, bv);
if (!tref_isk2(a, b)) { /* Shortcut, also handles primitives. */
IRType ta = tref_isinteger(a) ? IRT_INT : tref_type(a);
IRType tb = tref_isinteger(b) ? IRT_INT : tref_type(b);
if (ta != tb) {
/* Widen mixed number/int comparisons to number/number comparison. */
if (ta == IRT_INT && tb == IRT_NUM) {
a = emitir(IRTN(IR_TONUM), a, 0);
ta = IRT_NUM;
} else if (ta == IRT_NUM && tb == IRT_INT) {
b = emitir(IRTN(IR_TONUM), b, 0);
} else {
return 2; /* Two different types are never equal. */
}
}
emitir(IRTG(diff ? IR_NE : IR_EQ, ta), a, b);
}
return diff;
}
/* -- Record loop ops ----------------------------------------------------- */
/* Loop event. */
typedef enum {
LOOPEV_LEAVE, /* Loop is left or not entered. */
LOOPEV_ENTER /* Loop is entered. */
} LoopEvent;
/* Canonicalize slots: convert integers to numbers. */
static void canonicalize_slots(jit_State *J)
{
BCReg s;
for (s = J->baseslot+J->maxslot-1; s >= 1; s--) {
TRef tr = J->slot[s];
if (tref_isinteger(tr)) {
IRIns *ir = IR(tref_ref(tr));
if (!(ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_READONLY)))
J->slot[s] = emitir(IRTN(IR_TONUM), tr, 0);
}
}
}
/* Stop recording. */
static void rec_stop(jit_State *J, TraceNo lnk)
{
lj_trace_end(J);
J->cur.link = (uint16_t)lnk;
if (lnk == J->curtrace) { /* Looping back? */
if ((J->flags & JIT_F_OPT_LOOP)) /* Shall we try to create a loop? */
goto nocanon; /* Do not canonicalize or we lose the narrowing. */
if (J->cur.root) /* Otherwise ensure we always link to the root trace. */
J->cur.link = J->cur.root;
}
canonicalize_slots(J);
nocanon:
/* Note: all loop ops must set J->pc to the following instruction! */
lj_snap_add(J); /* Add loop snapshot. */
J->needsnap = 0;
J->mergesnap = 1; /* In case recording continues. */
}
/* Peek before FORI to find a const initializer, otherwise load from slot. */
static TRef fori_arg(jit_State *J, const BCIns *pc, BCReg slot, IRType t)
{
/* A store to slot-1 means there's no conditional assignment for slot. */
if (bc_a(pc[-1]) == slot-1 && bcmode_a(bc_op(pc[-1])) == BCMdst) {
BCIns ins = pc[0];
if (bc_a(ins) == slot) {
if (bc_op(ins) == BC_KSHORT) {
int32_t k = (int32_t)(int16_t)bc_d(ins);
if (t == IRT_INT)
return lj_ir_kint(J, k);
else
return lj_ir_knum(J, cast_num(k));
} else if (bc_op(ins) == BC_KNUM) {
lua_Number n = J->pt->k.n[bc_d(ins)];
if (t == IRT_INT)
return lj_ir_kint(J, lj_num2int(n));
else
return lj_ir_knum(J, n);
}
}
}
if (J->base[slot])
return J->base[slot];
if (t == IRT_INT)
t |= IRT_GUARD;
return sloadt(J, (int32_t)slot, t, IRSLOAD_READONLY|IRSLOAD_INHERIT);
}
/* Simulate the runtime behavior of the FOR loop iterator.
** It's important to exactly reproduce the semantics of the interpreter.
*/
static LoopEvent for_iter(jit_State *J, IROp *op, BCReg ra, int isforl)
{
cTValue *forbase = &J->L->base[ra];
lua_Number stopv = numV(&forbase[FORL_STOP]);
lua_Number idxv = numV(&forbase[FORL_IDX]);
if (isforl)
idxv += numV(&forbase[FORL_STEP]);
if ((int32_t)forbase[FORL_STEP].u32.hi >= 0) {
if (idxv <= stopv) { *op = IR_LE; return LOOPEV_ENTER; }
*op = IR_GT; return LOOPEV_LEAVE;
} else {
if (stopv <= idxv) { *op = IR_GE; return LOOPEV_ENTER; }
*op = IR_LT; return LOOPEV_LEAVE;
}
}
/* Record FORL/JFORL or FORI/JFORI. */
static LoopEvent rec_for(jit_State *J, const BCIns *fori, int isforl)
{
BCReg ra = bc_a(*fori);
IROp op;
LoopEvent ev = for_iter(J, &op, ra, isforl);
TRef *tr = &J->base[ra];
TRef idx, stop;
IRType t;
if (isforl) { /* Handle FORL/JFORL opcodes. */
TRef step;
idx = tr[FORL_IDX];
if (!idx) idx = sloadt(J, (int32_t)(ra+FORL_IDX), IRT_NUM, 0);
t = tref_type(idx);
stop = fori_arg(J, fori-2, ra+FORL_STOP, t);
step = fori_arg(J, fori-1, ra+FORL_STEP, t);
tr[FORL_IDX] = idx = emitir(IRT(IR_ADD, t), idx, step);
} else { /* Handle FORI/JFORI opcodes. */
BCReg i;
t = IRT_NUM;
for (i = FORL_IDX; i <= FORL_STEP; i++) {
lua_assert(J->base[ra+i] != 0); /* Assumes the slots are already set. */
tr[i] = lj_ir_tonum(J, J->base[ra+i]);
}
idx = tr[FORL_IDX];
stop = tr[FORL_STOP];
if (!tref_isk(tr[FORL_STEP])) /* Non-const step: need direction guard. */
emitir(IRTG(((op-IR_LT)>>1)+IR_LT, IRT_NUM),
tr[FORL_STEP], lj_ir_knum_zero(J));
}
tr[FORL_EXT] = idx;
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra+FORL_EXT+1;
J->pc = fori+1;
} else {
J->maxslot = ra;
J->pc = fori+bc_j(*fori)+1;
}
lj_snap_add(J);
emitir(IRTG(op, t), idx, stop);
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra;
J->pc = fori+bc_j(*fori)+1;
} else {
J->maxslot = ra+FORL_EXT+1;
J->pc = fori+1;
}
J->needsnap = 1;
return ev;
}
/* Record ITERL/JITERL. */
static LoopEvent rec_iterl(jit_State *J, const BCIns iterins)
{
BCReg ra = bc_a(iterins);
lua_assert(J->base[ra] != 0);
if (!tref_isnil(J->base[ra])) { /* Looping back? */
J->base[ra-1] = J->base[ra]; /* Copy result of ITERC to control var. */
J->maxslot = ra-1+bc_b(J->pc[-1]);
J->pc += bc_j(iterins)+1;
return LOOPEV_ENTER;
} else {
J->maxslot = ra-3;
J->pc++;
return LOOPEV_LEAVE;
}
}
/* Record LOOP/JLOOP. Now, that was easy. */
static LoopEvent rec_loop(jit_State *J, BCReg ra)
{
J->maxslot = ra;
J->pc++;
return LOOPEV_ENTER;
}
/* Check if a loop repeatedly failed to trace because it didn't loop back. */
static int innerloopleft(jit_State *J, const BCIns *pc)
{
ptrdiff_t i;
for (i = 0; i < PENALTY_SLOTS; i++)
if (J->penalty[i].pc == pc) {
if (J->penalty[i].reason == LJ_TRERR_LLEAVE &&
J->penalty[i].val >= 2*HOTCOUNT_MIN_PENALTY)
return 1;
break;
}
return 0;
}
/* Handle the case when an interpreted loop op is hit. */
static void rec_loop_interp(jit_State *J, const BCIns *pc, LoopEvent ev)
{
if (J->parent == 0) {
if (pc == J->startpc && J->framedepth == 0) { /* Same loop? */
if (ev == LOOPEV_LEAVE) /* Must loop back to form a root trace. */
lj_trace_err(J, LJ_TRERR_LLEAVE);
rec_stop(J, J->curtrace); /* Root trace forms a loop. */
} else if (ev != LOOPEV_LEAVE) { /* Entering inner loop? */
/* It's usually better to abort here and wait until the inner loop
** is traced. But if the inner loop repeatedly didn't loop back,
** this indicates a low trip count. In this case try unrolling
** an inner loop even in a root trace. But it's better to be a bit
** more conservative here and only do it for very short loops.
*/
if (!innerloopleft(J, pc))
lj_trace_err(J, LJ_TRERR_LINNER); /* Root trace hit an inner loop. */
if ((J->loopref && J->cur.nins - J->loopref > 8) || --J->loopunroll < 0)
lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */
J->loopref = J->cur.nins;
}
} else if (ev != LOOPEV_LEAVE) { /* Side trace enters an inner loop. */
J->loopref = J->cur.nins;
if (--J->loopunroll < 0)
lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */
} /* Side trace continues across a loop that's left or not entered. */
}
/* Handle the case when an already compiled loop op is hit. */
static void rec_loop_jit(jit_State *J, TraceNo lnk, LoopEvent ev)
{
if (J->parent == 0) { /* Root trace hit an inner loop. */
/* Better let the inner loop spawn a side trace back here. */
lj_trace_err(J, LJ_TRERR_LINNER);
} else if (ev != LOOPEV_LEAVE) { /* Side trace enters a compiled loop. */
J->instunroll = 0; /* Cannot continue across a compiled loop op. */
if (J->pc == J->startpc && J->framedepth == 0)
lnk = J->curtrace; /* Can form an extra loop. */
rec_stop(J, lnk); /* Link to the loop. */
} /* Side trace continues across a loop that's left or not entered. */
}
/* -- Metamethod handling ------------------------------------------------- */
/* Prepare to record call to metamethod. */
static BCReg rec_mm_prep(jit_State *J, ASMFunction cont)
{
BCReg s, top = curr_proto(J->L)->framesize;
TRef trcont;
setcont(&J->L->base[top], cont);
#if LJ_64
trcont = lj_ir_kptr(J, (void *)((int64_t)cont - (int64_t)lj_vm_asm_begin));
#else
trcont = lj_ir_kptr(J, (void *)cont);
#endif
J->base[top] = emitir(IRTG(IR_FRAME, IRT_PTR), trcont, trcont);
for (s = J->maxslot; s < top; s++)
J->base[s] = TREF_NIL;
return top+1;
}
/* Record metamethod lookup. */
static int rec_mm_lookup(jit_State *J, RecordIndex *ix, MMS mm)
{
RecordIndex mix;
GCtab *mt;
if (tref_istab(ix->tab)) {
mt = tabref(tabV(&ix->tabv)->metatable);
mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META);
} else if (tref_isudata(ix->tab)) {
mt = tabref(udataV(&ix->tabv)->metatable);
mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_UDATA_META);
} else {
/* Specialize to base metatable. Must flush mcode in lua_setmetatable(). */
mt = tabref(basemt_obj(J2G(J), &ix->tabv));
if (mt == NULL)
return 0; /* No metamethod. */
mix.tab = lj_ir_ktab(J, mt);
goto nocheck;
}
ix->mt = mt ? mix.tab : TREF_NIL;
emitir(IRTG(mt ? IR_NE : IR_EQ, IRT_TAB), mix.tab, lj_ir_knull(J, IRT_TAB));
nocheck:
if (mt) {
GCstr *mmstr = strref(J2G(J)->mmname[mm]);
cTValue *mo = lj_tab_getstr(mt, mmstr);
if (mo && !tvisnil(mo))
copyTV(J->L, &ix->mobjv, mo);
ix->mtv = mt;
settabV(J->L, &mix.tabv, mt);
if (isdead(J2G(J), obj2gco(mmstr)))
flipwhite(obj2gco(mmstr)); /* Need same logic as lj_str_new(). */
setstrV(J->L, &mix.keyv, mmstr);
mix.key = lj_ir_kstr(J, mmstr);
mix.val = 0;
mix.idxchain = 0;
ix->mobj = rec_idx(J, &mix);
return !tref_isnil(ix->mobj); /* 1 if metamethod found, 0 if not. */
}
return 0; /* No metamethod. */
}
/* Record call to arithmetic metamethod (and MM_len). */
static TRef rec_mm_arith(jit_State *J, RecordIndex *ix, MMS mm)
{
/* Set up metamethod call first to save ix->tab and ix->tabv. */
BCReg func = rec_mm_prep(J, lj_cont_ra);
TRef *base = J->base + func;
TValue *basev = J->L->base + func;
base[1] = ix->tab; base[2] = ix->key;
copyTV(J->L, basev+1, &ix->tabv);
copyTV(J->L, basev+2, &ix->keyv);
if (!rec_mm_lookup(J, ix, mm)) { /* Lookup metamethod on 1st operand. */
if (mm != MM_len) {
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, &ix->keyv);
if (rec_mm_lookup(J, ix, mm)) /* Lookup metamethod on 2nd operand. */
goto ok;
}
lj_trace_err(J, LJ_TRERR_NOMM);
}
ok:
base[0] = ix->mobj;
copyTV(J->L, basev+0, &ix->mobjv);
return rec_call(J, func, CALLRES_CONT, 2) ? J->base[func] : 0;
}
/* Call a comparison metamethod. */
static void rec_mm_callcomp(jit_State *J, RecordIndex *ix, int op)
{
BCReg func = rec_mm_prep(J, (op&1) ? lj_cont_condf : lj_cont_condt);
TRef *base = J->base + func;
TValue *tv = J->L->base + func;
base[0] = ix->mobj; base[1] = ix->val; base[2] = ix->key;
copyTV(J->L, tv+0, &ix->mobjv);
copyTV(J->L, tv+1, &ix->valv);
copyTV(J->L, tv+2, &ix->keyv);
rec_call(J, func, CALLRES_CONT, 2);
/* It doesn't matter whether this is immediately resolved or not.
** Type specialization of the return type suffices to specialize
** the control flow.
*/
}
/* Record call to equality comparison metamethod (for tab and udata only). */
static void rec_mm_equal(jit_State *J, RecordIndex *ix, int op)
{
ix->tab = ix->val;
copyTV(J->L, &ix->tabv, &ix->valv);
if (rec_mm_lookup(J, ix, MM_eq)) { /* Lookup metamethod on 1st operand. */
cTValue *bv;
TRef mo1 = ix->mobj;
TValue mo1v;
copyTV(J->L, &mo1v, &ix->mobjv);
/* Avoid the 2nd lookup and the objcmp if the metatables are equal. */
bv = &ix->keyv;
if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else { /* Lookup metamethod on 2nd operand and compare both. */
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, bv);
if (!rec_mm_lookup(J, ix, MM_eq) ||
rec_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv))
return;
}
rec_mm_callcomp(J, ix, op);
}
}
/* Record call to ordered comparison metamethods (for arbitrary objects). */
static void rec_mm_comp(jit_State *J, RecordIndex *ix, int op)
{
ix->tab = ix->val;
copyTV(J->L, &ix->tabv, &ix->valv);
while (1) {
MMS mm = (op & 2) ? MM_le : MM_lt; /* Try __le + __lt or only __lt. */
if (rec_mm_lookup(J, ix, mm)) { /* Lookup metamethod on 1st operand. */
cTValue *bv;
TRef mo1 = ix->mobj;
TValue mo1v;
copyTV(J->L, &mo1v, &ix->mobjv);
/* Avoid the 2nd lookup and the objcmp if the metatables are equal. */
bv = &ix->keyv;
if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) {
TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META);
emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt);
} else { /* Lookup metamethod on 2nd operand and compare both. */
ix->tab = ix->key;
copyTV(J->L, &ix->tabv, bv);
if (!rec_mm_lookup(J, ix, mm) ||
rec_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv))
goto nomatch;
}
rec_mm_callcomp(J, ix, op);
return;
}
nomatch:
/* First lookup failed. Retry with __lt and swapped operands. */
if (!(op & 2)) break; /* Already at __lt. Interpreter will throw. */
ix->tab = ix->key; ix->key = ix->val; ix->val = ix->tab;
copyTV(J->L, &ix->tabv, &ix->keyv);
copyTV(J->L, &ix->keyv, &ix->valv);
copyTV(J->L, &ix->valv, &ix->tabv);
op ^= 3;
}
}
/* -- Indexed access ------------------------------------------------------ */
/* Record indexed key lookup. */
static TRef rec_idx_key(jit_State *J, RecordIndex *ix)
{
TRef key;
GCtab *t = tabV(&ix->tabv);
ix->oldv = lj_tab_get(J->L, t, &ix->keyv); /* Lookup previous value. */
/* Integer keys are looked up in the array part first. */
key = ix->key;
if (tref_isnumber(key)) {
lua_Number n = numV(&ix->keyv);
int32_t k = lj_num2int(n);
lua_assert(tvisnum(&ix->keyv));
/* Potential array key? */
if ((MSize)k < LJ_MAX_ASIZE && n == cast_num(k)) {
TRef asizeref, ikey = key;
if (!tref_isinteger(ikey))
ikey = emitir(IRTGI(IR_TOINT), ikey, IRTOINT_INDEX);
asizeref = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
if ((MSize)k < t->asize) { /* Currently an array key? */
TRef arrayref;
emitir(IRTGI(IR_ABC), asizeref, ikey); /* Bounds check. */
arrayref = emitir(IRT(IR_FLOAD, IRT_PTR), ix->tab, IRFL_TAB_ARRAY);
return emitir(IRT(IR_AREF, IRT_PTR), arrayref, ikey);
} else { /* Currently not in array (may be an array extension)? */
emitir(IRTGI(IR_ULE), asizeref, ikey); /* Inv. bounds check. */
if (k == 0 && tref_isk(key))
key = lj_ir_knum_zero(J); /* Canonicalize 0 or +-0.0 to +0.0. */
/* And continue with the hash lookup. */
}
} else if (!tref_isk(key)) {
/* We can rule out const numbers which failed the integerness test
** above. But all other numbers are potential array keys.
*/
if (t->asize == 0) { /* True sparse tables have an empty array part. */
/* Guard that the array part stays empty. */
TRef tmp = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
emitir(IRTGI(IR_EQ), tmp, lj_ir_kint(J, 0));
} else {
lj_trace_err(J, LJ_TRERR_NYITMIX);
}
}
}
/* Otherwise the key is located in the hash part. */
if (tref_isinteger(key)) /* Hash keys are based on numbers, not ints. */
ix->key = key = emitir(IRTN(IR_TONUM), key, 0);
if (tref_isk(key)) {
/* Optimize lookup of constant hash keys. */
MSize hslot = (MSize)((char *)ix->oldv - (char *)&noderef(t->node)[0].val);
if (t->hmask > 0 && hslot <= t->hmask*(MSize)sizeof(Node) &&
hslot <= 65535*(MSize)sizeof(Node)) {
TRef node, kslot;
TRef hm = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_HMASK);
emitir(IRTGI(IR_EQ), hm, lj_ir_kint(J, (int32_t)t->hmask));
node = emitir(IRT(IR_FLOAD, IRT_PTR), ix->tab, IRFL_TAB_NODE);
kslot = lj_ir_kslot(J, key, hslot / sizeof(Node));
return emitir(IRTG(IR_HREFK, IRT_PTR), node, kslot);
}
}
/* Fall back to a regular hash lookup. */
return emitir(IRT(IR_HREF, IRT_PTR), ix->tab, key);
}
/* Determine whether a key is NOT one of the fast metamethod names. */
static int nommstr(jit_State *J, TRef key)
{
if (tref_isstr(key)) {
if (tref_isk(key)) {
GCstr *str = ir_kstr(IR(tref_ref(key)));
uint32_t i;
for (i = 0; i <= MM_FAST; i++)
if (strref(J2G(J)->mmname[i]) == str)
return 0; /* MUST be one the fast metamethod names. */
} else {
return 0; /* Variable string key MAY be a metamethod name. */
}
}
return 1; /* CANNOT be a metamethod name. */
}
/* Record indexed load/store. */
static TRef rec_idx(jit_State *J, RecordIndex *ix)
{
TRef xref;
IROp xrefop, loadop;
cTValue *oldv;
while (!tref_istab(ix->tab)) { /* Handle non-table lookup. */
lua_assert(ix->idxchain != 0); /* Never call raw rec_idx() on non-table. */
if (!rec_mm_lookup(J, ix, ix->val ? MM_newindex : MM_index))
lj_trace_err(J, LJ_TRERR_NOMM);
handlemm:
if (tref_isfunc(ix->mobj)) { /* Handle metamethod call. */
BCReg func = rec_mm_prep(J, ix->val ? lj_cont_nop : lj_cont_ra);
TRef *base = J->base + func;
TValue *tv = J->L->base + func;
base[0] = ix->mobj; base[1] = ix->tab; base[2] = ix->key;
setfuncV(J->L, tv+0, funcV(&ix->mobjv));
copyTV(J->L, tv+1, &ix->tabv);
copyTV(J->L, tv+2, &ix->keyv);
if (ix->val) {
base[3] = ix->val;
copyTV(J->L, tv+3, &ix->valv);
rec_call(J, func, CALLRES_CONT, 3); /* mobj(tab, key, val) */
return 0;
} else {
/* res = mobj(tab, key) */
return rec_call(J, func, CALLRES_CONT, 2) ? J->base[func] : 0;
}
}
/* Otherwise retry lookup with metaobject. */
ix->tab = ix->mobj;
copyTV(J->L, &ix->tabv, &ix->mobjv);
if (--ix->idxchain == 0)
lj_trace_err(J, LJ_TRERR_IDXLOOP);
}
/* First catch nil and NaN keys for tables. */
if (tvisnil(&ix->keyv) || (tvisnum(&ix->keyv) && tvisnan(&ix->keyv))) {
if (ix->val) /* Better fail early. */
lj_trace_err(J, LJ_TRERR_STORENN);
if (tref_isk(ix->key)) {
if (ix->idxchain && rec_mm_lookup(J, ix, MM_index))
goto handlemm;
return TREF_NIL;
}
}
/* Record the key lookup. */
xref = rec_idx_key(J, ix);
xrefop = IR(tref_ref(xref))->o;
loadop = xrefop == IR_AREF ? IR_ALOAD : IR_HLOAD;
oldv = ix->oldv;
if (ix->val == 0) { /* Indexed load */
IRType t = itype2irt(oldv);
TRef res = emitir(IRTG(loadop, t), xref, 0);
if (t == IRT_NIL && ix->idxchain && rec_mm_lookup(J, ix, MM_index))
goto handlemm;
if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitives. */
return res;
} else { /* Indexed store. */
GCtab *mt = tabref(tabV(&ix->tabv)->metatable);
if (tvisnil(oldv)) { /* Previous value was nil? */
/* Need to duplicate the hasmm check for the early guards. */
int hasmm = 0;
if (ix->idxchain && mt) {
cTValue *mo = lj_tab_getstr(mt, strref(J2G(J)->mmname[MM_newindex]));
hasmm = mo && !tvisnil(mo);
}
if (hasmm || oldv == niltvg(J2G(J)))
emitir(IRTG(loadop, IRT_NIL), xref, 0); /* Guard for nil value. */
else if (xrefop == IR_HREF)
emitir(IRTG(IR_NE, IRT_PTR), xref, lj_ir_kptr(J, niltvg(J2G(J))));
if (ix->idxchain && rec_mm_lookup(J, ix, MM_newindex)) { /* Metamethod? */
lua_assert(hasmm);
goto handlemm;
}
lua_assert(!hasmm);
if (oldv == niltvg(J2G(J))) { /* Need to insert a new key. */
TRef key = ix->key;
if (tref_isinteger(key)) /* NEWREF needs a TValue as a key. */
key = emitir(IRTN(IR_TONUM), key, 0);
xref = emitir(IRT(IR_NEWREF, IRT_PTR), ix->tab, key);
}
} else if (!lj_opt_fwd_wasnonnil(J, loadop, tref_ref(xref))) {
/* Cannot derive that the previous value was non-nil, must do checks. */
if (xrefop == IR_HREF) /* Guard against store to niltv. */
emitir(IRTG(IR_NE, IRT_PTR), xref, lj_ir_kptr(J, niltvg(J2G(J))));
if (ix->idxchain) { /* Metamethod lookup required? */
/* A check for NULL metatable is cheaper (hoistable) than a load. */
if (!mt) {
TRef mtref = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META);
emitir(IRTG(IR_EQ, IRT_TAB), mtref, lj_ir_knull(J, IRT_TAB));
} else {
IRType t = itype2irt(oldv);
emitir(IRTG(loadop, t), xref, 0); /* Guard for non-nil value. */
}
}
}
if (tref_isinteger(ix->val)) /* Convert int to number before storing. */
ix->val = emitir(IRTN(IR_TONUM), ix->val, 0);
emitir(IRT(loadop+IRDELTA_L2S, tref_type(ix->val)), xref, ix->val);
if (tref_isgcv(ix->val))
emitir(IRT(IR_TBAR, IRT_NIL), ix->tab, 0);
/* Invalidate neg. metamethod cache for stores with certain string keys. */
if (!nommstr(J, ix->key)) {
TRef fref = emitir(IRT(IR_FREF, IRT_PTR), ix->tab, IRFL_TAB_NOMM);
emitir(IRT(IR_FSTORE, IRT_U8), fref, lj_ir_kint(J, 0));
}
J->needsnap = 1;
return 0;
}
}
/* -- Upvalue access ------------------------------------------------------ */
/* Shrink disambiguation hash into an 8 bit value. */
static uint32_t shrink_dhash(uint32_t lo, uint32_t hi)
{
lo ^= hi; hi = lj_rol(hi, 14);
lo -= hi; hi = lj_rol(hi, 5);
hi ^= lo; hi -= lj_rol(lo, 27);
return (hi & 0xff);
}
/* Record upvalue load/store. */
static TRef rec_upvalue(jit_State *J, uint32_t uv, TRef val)
{
GCupval *uvp = &gcref(J->fn->l.uvptr[uv])->uv;
TRef fn = getcurrf(J);
IRRef uref;
int needbarrier = 0;
/* Note: this effectively limits LJ_MAX_UPVAL to 127. */
uv = (uv << 8) | shrink_dhash(uvp->dhash, uvp->dhash-0x04c11db7);
if (!uvp->closed) {
/* In current stack? */
if (uvval(uvp) >= J->L->stack && uvval(uvp) < J->L->maxstack) {
int32_t slot = (int32_t)(uvval(uvp) - (J->L->base - J->baseslot));
if (slot >= 0) { /* Aliases an SSA slot? */
slot -= (int32_t)J->baseslot; /* Note: slot number may be negative! */
/* NYI: add IR to guard that it's still aliasing the same slot. */
if (val == 0) {
return getslot(J, slot);
} else {
J->base[slot] = val;
if (slot >= (int32_t)J->maxslot) J->maxslot = (BCReg)(slot+1);
return 0;
}
}
}
uref = tref_ref(emitir(IRTG(IR_UREFO, IRT_PTR), fn, uv));
} else {
needbarrier = 1;
uref = tref_ref(emitir(IRTG(IR_UREFC, IRT_PTR), fn, uv));
}
if (val == 0) { /* Upvalue load */
IRType t = itype2irt(uvval(uvp));
TRef res = emitir(IRTG(IR_ULOAD, t), uref, 0);
if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitive refs. */
return res;
} else { /* Upvalue store. */
if (tref_isinteger(val)) /* Convert int to number before storing. */
val = emitir(IRTN(IR_TONUM), val, 0);
emitir(IRT(IR_USTORE, tref_type(val)), uref, val);
if (needbarrier && tref_isgcv(val))
emitir(IRT(IR_OBAR, IRT_NIL), uref, val);
J->needsnap = 1;
return 0;
}
}
/* -- Record calls to fast functions -------------------------------------- */
/* Note: The function and the arguments for the bytecode CALL instructions
** always occupy _new_ stack slots (above the highest active variable).
** This means they must have been stored there by previous instructions
** (MOV, K*, ADD etc.) which must be part of the same trace. This in turn
** means their reference slots are already valid and their types have
** already been specialized (i.e. getslot() would be redundant).
** The 1st slot beyond the arguments is set to 0 before calling recff_*.
*/
/* Data used by handlers to record a fast function. */
typedef struct RecordFFData {
TValue *argv; /* Runtime argument values. */
GCfunc *fn; /* The currently recorded function. */
int nargs; /* Number of passed arguments. */
int nres; /* Number of returned results (defaults to 1). */
int cres; /* Wanted number of call results. */
uint32_t data; /* Per-ffid auxiliary data (opcode, literal etc.). */
} RecordFFData;
/* Type of handler to record a fast function. */
typedef void (*RecordFunc)(jit_State *J, TRef *res, RecordFFData *rd);
/* Avoid carrying two pointers around. */
#define arg (res+1)
/* Get runtime value of int argument. */
static int32_t argv2int(jit_State *J, TValue *o)
{
if (tvisstr(o) && !lj_str_tonum(strV(o), o))
lj_trace_err(J, LJ_TRERR_BADTYPE);
return lj_num2bit(numV(o));
}
/* Get runtime value of string argument. */
static GCstr *argv2str(jit_State *J, TValue *o)
{
if (LJ_LIKELY(tvisstr(o))) {
return strV(o);
} else {
GCstr *s;
lua_assert(tvisnum(o));
s = lj_str_fromnum(J->L, &o->n);
setstrV(J->L, o, s);
return s;
}
}
/* Fallback handler for all fast functions that are not recorded (yet). */
static void recff_nyi(jit_State *J, TRef *res, RecordFFData *rd)
{
UNUSED(res);
setfuncV(J->L, &J->errinfo, rd->fn);
lj_trace_err_info(J, LJ_TRERR_NYIFF);
}
LJ_NORET static void recff_err_nyi(jit_State *J, RecordFFData *rd)
{
setfuncV(J->L, &J->errinfo, rd->fn);
lj_trace_err_info(J, LJ_TRERR_NYIFFU);
}
/* C functions can have arbitrary side-effects and are not recorded (yet). */
static void recff_c(jit_State *J, TRef *res, RecordFFData *rd)
{
UNUSED(res);
setlightudV(&J->errinfo, (void *)rd->fn->c.f);
lj_trace_err_info(J, LJ_TRERR_NYICF);
}
/* -- Base library fast functions ----------------------------------------- */
static void recff_assert(jit_State *J, TRef *res, RecordFFData *rd)
{
/* Arguments already specialized. The interpreter throws for nil/false. */
BCReg i;
for (i = 0; arg[i]; i++) /* Need to pass through all arguments. */
res[i] = arg[i];
rd->nres = (int)i;
UNUSED(J);
}
static void recff_type(jit_State *J, TRef *res, RecordFFData *rd)
{
/* Arguments already specialized. Result is a constant string. Neat, huh? */
IRType t = tref_isinteger(arg[0]) ? IRT_NUM : tref_type(arg[0]);
res[0] = lj_ir_kstr(J, strV(&rd->fn->c.upvalue[t]));
}
static void recff_getmetatable(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = arg[0];
if (tref_istab(tr)) {
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
if (rec_mm_lookup(J, &ix, MM_metatable))
res[0] = ix.mobj;
else
res[0] = ix.mt;
} /* else: Interpreter will throw. */
}
static void recff_setmetatable(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = arg[0];
TRef mt = arg[1];
if (tref_istab(tr) && (tref_istab(mt) || (mt && tref_isnil(mt)))) {
TRef fref, mtref;
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
rec_mm_lookup(J, &ix, MM_metatable); /* Guard for no __metatable field. */
fref = emitir(IRT(IR_FREF, IRT_PTR), tr, IRFL_TAB_META);
mtref = tref_isnil(mt) ? lj_ir_knull(J, IRT_TAB) : mt;
emitir(IRT(IR_FSTORE, IRT_TAB), fref, mtref);
if (!tref_isnil(mt))
emitir(IRT(IR_TBAR, IRT_TAB), tr, 0);
res[0] = tr;
J->needsnap = 1;
} /* else: Interpreter will throw. */
}
static void recff_rawget(jit_State *J, TRef *res, RecordFFData *rd)
{
if (tref_istab(arg[0]) && arg[1]) {
RecordIndex ix;
ix.tab = arg[0]; ix.key = arg[1]; ix.val = 0; ix.idxchain = 0;
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
copyTV(J->L, &ix.keyv, &rd->argv[1]);
res[0] = rec_idx(J, &ix);
} /* else: Interpreter will throw. */
}
static void recff_rawset(jit_State *J, TRef *res, RecordFFData *rd)
{
if (tref_istab(arg[0]) && arg[1] && arg[2]) {
RecordIndex ix;
ix.tab = arg[0]; ix.key = arg[1]; ix.val = arg[2]; ix.idxchain = 0;
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
copyTV(J->L, &ix.keyv, &rd->argv[1]);
copyTV(J->L, &ix.valv, &rd->argv[2]);
rec_idx(J, &ix);
res[0] = arg[0]; /* Returns table. */
} /* else: Interpreter will throw. */
}
static void recff_rawequal(jit_State *J, TRef *res, RecordFFData *rd)
{
if (arg[0] && arg[1]) {
int diff = rec_objcmp(J, arg[0], arg[1], &rd->argv[0], &rd->argv[1]);
res[0] = diff ? TREF_FALSE : TREF_TRUE;
} /* else: Interpreter will throw. */
}
static void recff_tonumber(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = arg[0];
if (tref_isnumber_str(tr)) {
if (arg[1]) {
TRef base = lj_ir_toint(J, arg[1]);
if (!tref_isk(base) || IR(tref_ref(base))->i != 10)
recff_err_nyi(J, rd);
}
if (tref_isstr(tr))
tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
} else {
tr = TREF_NIL;
}
res[0] = tr;
UNUSED(rd);
}
static void recff_tostring(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = arg[0];
if (tref_isstr(tr)) {
/* Ignore __tostring in the string base metatable. */
res[0] = tr;
} else {
RecordIndex ix;
ix.tab = tr;
copyTV(J->L, &ix.tabv, &rd->argv[0]);
if (rec_mm_lookup(J, &ix, MM_tostring)) { /* Has __tostring metamethod? */
res[0] = ix.mobj;
copyTV(J->L, rd->argv - 1, &ix.mobjv);
if (!rec_call(J, (BCReg)(res - J->base), 1, 1)) /* Pending call? */
rd->cres = CALLRES_PENDING;
/* Otherwise res[0] already contains the result. */
} else if (tref_isnumber(tr)) {
res[0] = emitir(IRT(IR_TOSTR, IRT_STR), tr, 0);
} else if (tref_ispri(tr)) {
res[0] = lj_ir_kstr(J, strV(&rd->fn->c.upvalue[tref_type(tr)]));
} else {
recff_err_nyi(J, rd);
}
}
}
static void recff_ipairs_aux(jit_State *J, TRef *res, RecordFFData *rd)
{
RecordIndex ix;
ix.tab = arg[0];
if (tref_istab(ix.tab)) {
if (!tvisnum(&rd->argv[1])) /* No support for string coercion. */
lj_trace_err(J, LJ_TRERR_BADTYPE);
setnumV(&ix.keyv, numV(&rd->argv[1])+(lua_Number)1);
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
ix.val = 0; ix.idxchain = 0;
ix.key = lj_ir_toint(J, arg[1]);
res[0] = ix.key = emitir(IRTI(IR_ADD), ix.key, lj_ir_kint(J, 1));
res[1] = rec_idx(J, &ix);
rd->nres = tref_isnil(res[1]) ? 0 : 2;
} /* else: Interpreter will throw. */
}
static void recff_ipairs(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tab = arg[0];
if (tref_istab(tab)) {
res[0] = lj_ir_kfunc(J, funcV(&rd->fn->c.upvalue[0]));
res[1] = tab;
res[2] = lj_ir_kint(J, 0);
rd->nres = 3;
} /* else: Interpreter will throw. */
}
static void recff_pcall(jit_State *J, TRef *res, RecordFFData *rd)
{
if (rd->nargs >= 1) {
BCReg parg = (BCReg)(arg - J->base);
if (rec_call(J, parg, CALLRES_MULTI, rd->nargs - 1)) { /* Resolved call. */
res[0] = TREF_TRUE; /* Prepend true result. No need to move results. */
rd->nres = (int)((J->maxslot - parg) + 1);
} else { /* Propagate pending call. */
rd->cres = CALLRES_PENDING;
}
} /* else: Interpreter will throw. */
}
/* Struct to pass context across lj_vm_cpcall. */
typedef struct RecordXpcall {
BCReg parg;
int nargs;
int resolved;
} RecordXpcall;
static TValue *recff_xpcall_cp(lua_State *L, lua_CFunction dummy, void *ud)
{
jit_State *J = L2J(L);
RecordXpcall *rx = (RecordXpcall *)ud;
UNUSED(dummy);
rx->resolved = rec_call(J, rx->parg, CALLRES_MULTI, rx->nargs);
return NULL;
}
static void recff_xpcall(jit_State *J, TRef *res, RecordFFData *rd)
{
if (rd->nargs >= 2) {
RecordXpcall rx;
BCReg parg = (BCReg)(arg - J->base) + 1;
TRef tmp;
TValue argv0, argv1;
ptrdiff_t oargv;
int errcode;
/* Swap function and traceback. */
tmp = arg[0]; arg[0] = arg[1]; arg[1] = tmp;
copyTV(J->L, &argv0, &rd->argv[0]);
copyTV(J->L, &argv1, &rd->argv[1]);
copyTV(J->L, &rd->argv[0], &argv1);
copyTV(J->L, &rd->argv[1], &argv0);
oargv = savestack(J->L, rd->argv);
/* Need to protect rec_call because the recorder may throw. */
rx.parg = parg;
rx.nargs = rd->nargs - 2;
errcode = lj_vm_cpcall(J->L, NULL, &rx, recff_xpcall_cp);
/* Always undo Lua stack swap to avoid confusing the interpreter. */
rd->argv = restorestack(J->L, oargv); /* Stack may have been resized. */
copyTV(J->L, &rd->argv[0], &argv0);
copyTV(J->L, &rd->argv[1], &argv1);
if (errcode)
lj_err_throw(J->L, errcode); /* Propagate errors. */
if (rx.resolved) { /* Resolved call. */
int i, nres = (int)(J->maxslot - parg);
rd->nres = nres + 1;
res[0] = TREF_TRUE; /* Prepend true result. */
for (i = 1; i <= nres; i++) /* Move results down. */
res[i] = res[i+1];
} else { /* Propagate pending call. */
rd->cres = CALLRES_PENDING;
}
} /* else: Interpreter will throw. */
}
/* -- Math library fast functions ----------------------------------------- */
static void recff_math_abs(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
res[0] = emitir(IRTN(IR_ABS), tr, lj_ir_knum_abs(J));
UNUSED(rd);
}
/* Record rounding functions math.floor and math.ceil. */
static void recff_math_round(jit_State *J, TRef *res, RecordFFData *rd)
{
if (tref_isinteger(arg[0]))
res[0] = arg[0];
else
res[0] = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, arg[0]), rd->data);
/* Note: result is integral (or NaN/Inf), but may not fit into an integer. */
}
/* Record unary math.* functions, mapped to IR_FPMATH opcode. */
static void recff_math_unary(jit_State *J, TRef *res, RecordFFData *rd)
{
res[0] = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, arg[0]), rd->data);
}
/* Record binary math.* functions math.atan2 and math.ldexp. */
static void recff_math_binary(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
res[0] = emitir(IRTN(rd->data), tr, lj_ir_tonum(J, arg[1]));
}
/* Record math.asin, math.acos, math.atan. */
static void recff_math_atrig(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef y = lj_ir_tonum(J, arg[0]);
TRef x = lj_ir_knum_one(J);
uint32_t ffid = rd->data;
if (ffid != FF_math_atan) {
TRef tmp = emitir(IRTN(IR_MUL), y, y);
tmp = emitir(IRTN(IR_SUB), x, tmp);
tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_SQRT);
if (ffid == FF_math_asin) { x = tmp; } else { x = y; y = tmp; }
}
res[0] = emitir(IRTN(IR_ATAN2), y, x);
}
static void recff_math_htrig(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
res[0] = lj_ir_call(J, rd->data, tr);
}
static void recff_math_modf(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = arg[0];
if (tref_isinteger(tr)) {
res[0] = tr;
res[1] = lj_ir_kint(J, 0);
} else {
tr = lj_ir_tonum(J, tr);
res[0] = emitir(IRTN(IR_FPMATH), tr, IRFPM_TRUNC);
res[1] = emitir(IRTN(IR_SUB), tr, res[0]);
}
rd->nres = 2;
}
static void recff_math_degrad(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
res[0] = emitir(IRTN(IR_MUL), tr, lj_ir_knum(J, numV(&rd->fn->c.upvalue[0])));
}
static void recff_math_pow(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
if (!tref_isnumber_str(arg[1]))
lj_trace_err(J, LJ_TRERR_BADTYPE);
res[0] = lj_opt_narrow_pow(J, tr, arg[1], &rd->argv[1]);
UNUSED(rd);
}
static void recff_math_minmax(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tonum(J, arg[0]);
uint32_t op = rd->data;
BCReg i;
for (i = 1; arg[i]; i++)
tr = emitir(IRTN(op), tr, lj_ir_tonum(J, arg[i]));
res[0] = tr;
}
static void recff_math_random(jit_State *J, TRef *res, RecordFFData *rd)
{
GCudata *ud = udataV(&rd->fn->c.upvalue[0]);
TRef tr, one;
lj_ir_kgc(J, obj2gco(ud), IRT_UDATA); /* Prevent collection. */
tr = lj_ir_call(J, IRCALL_lj_math_random_step, lj_ir_kptr(J, uddata(ud)));
one = lj_ir_knum_one(J);
tr = emitir(IRTN(IR_SUB), tr, one);
if (arg[0]) {
TRef tr1 = lj_ir_tonum(J, arg[0]);
if (arg[1]) { /* d = floor(d*(r2-r1+1.0)) + r1 */
TRef tr2 = lj_ir_tonum(J, arg[1]);
tr2 = emitir(IRTN(IR_SUB), tr2, tr1);
tr2 = emitir(IRTN(IR_ADD), tr2, one);
tr = emitir(IRTN(IR_MUL), tr, tr2);
tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR);
tr = emitir(IRTN(IR_ADD), tr, tr1);
} else { /* d = floor(d*r1) + 1.0 */
tr = emitir(IRTN(IR_MUL), tr, tr1);
tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR);
tr = emitir(IRTN(IR_ADD), tr, one);
}
}
res[0] = tr;
}
/* -- Bit library fast functions ------------------------------------------ */
/* Record unary bit.tobit, bit.bnot, bit.bswap. */
static void recff_bit_unary(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, arg[0]);
res[0] = (rd->data == IR_TOBIT) ? tr : emitir(IRTI(rd->data), tr, 0);
}
/* Record N-ary bit.band, bit.bor, bit.bxor. */
static void recff_bit_nary(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, arg[0]);
uint32_t op = rd->data;
BCReg i;
for (i = 1; arg[i]; i++)
tr = emitir(IRTI(op), tr, lj_ir_tobit(J, arg[i]));
res[0] = tr;
}
/* Record bit shifts. */
static void recff_bit_shift(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef tr = lj_ir_tobit(J, arg[0]);
TRef tsh = lj_ir_tobit(J, arg[1]);
#if !LJ_TARGET_MASKEDSHIFT
if (!tref_isk(tsh))
tsh = emitir(IRTI(IR_BAND), tsh, lj_ir_kint(J, 31));
#endif
res[0] = emitir(IRTI(rd->data), tr, tsh);
}
/* -- String library fast functions --------------------------------------- */
static void recff_string_len(jit_State *J, TRef *res, RecordFFData *rd)
{
res[0] = emitir(IRTI(IR_FLOAD), lj_ir_tostr(J, arg[0]), IRFL_STR_LEN);
UNUSED(rd);
}
/* Handle string.byte (rd->data = 0) and string.sub (rd->data = 1). */
static void recff_string_range(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef trstr = lj_ir_tostr(J, arg[0]);
TRef trlen = emitir(IRTI(IR_FLOAD), trstr, IRFL_STR_LEN);
TRef tr0 = lj_ir_kint(J, 0);
TRef trstart, trend;
GCstr *str = argv2str(J, &rd->argv[0]);
int32_t start, end;
if (rd->data) { /* string.sub(str, start [,end]) */
trstart = lj_ir_toint(J, arg[1]);
trend = tref_isnil(arg[2]) ? lj_ir_kint(J, -1) : lj_ir_toint(J, arg[2]);
start = argv2int(J, &rd->argv[1]);
end = tref_isnil(arg[2]) ? -1 : argv2int(J, &rd->argv[2]);
} else { /* string.byte(str, [,start [,end]]) */
if (arg[1]) {
trstart = lj_ir_toint(J, arg[1]);
trend = tref_isnil(arg[2]) ? trstart : lj_ir_toint(J, arg[2]);
start = argv2int(J, &rd->argv[1]);
end = tref_isnil(arg[2]) ? start : argv2int(J, &rd->argv[2]);
} else {
trend = trstart = lj_ir_kint(J, 1);
end = start = 1;
}
}
if (end < 0) {
emitir(IRTGI(IR_LT), trend, tr0);
trend = emitir(IRTI(IR_ADD), emitir(IRTI(IR_ADD), trlen, trend),
lj_ir_kint(J, 1));
end = end+(int32_t)str->len+1;
} else if ((MSize)end <= str->len) {
emitir(IRTGI(IR_ULE), trend, trlen);
} else {
emitir(IRTGI(IR_GT), trend, trlen);
end = (int32_t)str->len;
trend = trlen;
}
if (start < 0) {
emitir(IRTGI(IR_LT), trstart, tr0);
trstart = emitir(IRTI(IR_ADD), trlen, trstart);
start = start+(int32_t)str->len;
emitir(start < 0 ? IRTGI(IR_LT) : IRTGI(IR_GE), trstart, tr0);
if (start < 0) {
trstart = tr0;
start = 0;
}
} else {
if (start == 0) {
emitir(IRTGI(IR_EQ), trstart, tr0);
trstart = tr0;
} else {
trstart = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, -1));
emitir(IRTGI(IR_GE), trstart, tr0);
start--;
}
}
if (rd->data) { /* Return string.sub result. */
if (end - start >= 0) {
/* Also handle empty range here, to avoid extra traces. */
TRef trptr, trslen = emitir(IRTI(IR_SUB), trend, trstart);
emitir(IRTGI(IR_GE), trslen, tr0);
trptr = emitir(IRT(IR_STRREF, IRT_PTR), trstr, trstart);
res[0] = emitir(IRT(IR_SNEW, IRT_STR), trptr, trslen);
} else { /* Range underflow: return empty string. */
emitir(IRTGI(IR_LT), trend, trstart);
res[0] = lj_ir_kstr(J, lj_str_new(J->L, strdata(str), 0));
}
} else { /* Return string.byte result(s). */
int32_t i, len = end - start;
if (len > 0) {
TRef trslen = emitir(IRTI(IR_SUB), trend, trstart);
emitir(IRTGI(IR_EQ), trslen, lj_ir_kint(J, len));
if (res + len > J->slot + LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
rd->nres = len;
for (i = 0; i < len; i++) {
TRef tmp = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, i));
tmp = emitir(IRT(IR_STRREF, IRT_PTR), trstr, tmp);
res[i] = emitir(IRT(IR_XLOAD, IRT_U8), tmp, IRXLOAD_READONLY);
}
} else { /* Empty range or range underflow: return no results. */
emitir(IRTGI(IR_LE), trend, trstart);
rd->nres = 0;
}
}
}
/* -- Table library fast functions ---------------------------------------- */
static void recff_table_getn(jit_State *J, TRef *res, RecordFFData *rd)
{
if (tref_istab(arg[0])) {
res[0] = lj_ir_call(J, IRCALL_lj_tab_len, arg[0]);
} /* else: Interpreter will throw. */
UNUSED(rd);
}
static void recff_table_remove(jit_State *J, TRef *res, RecordFFData *rd)
{
if (tref_istab(arg[0])) {
if (!arg[1] || tref_isnil(arg[1])) { /* Simple pop: t[#t] = nil */
TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, arg[0]);
GCtab *t = tabV(&rd->argv[0]);
MSize len = lj_tab_len(t);
emitir(IRTGI(len ? IR_NE : IR_EQ), trlen, lj_ir_kint(J, 0));
if (len) {
RecordIndex ix;
ix.tab = arg[0];
ix.key = trlen;
settabV(J->L, &ix.tabv, t);
setintV(&ix.keyv, len);
ix.idxchain = 0;
if (rd->cres != 0) { /* Specialize load only if result needed. */
ix.val = 0;
res[0] = rec_idx(J, &ix); /* Load previous value. */
/* Assumes ix.key/ix.tab is not modified for raw rec_idx(). */
}
ix.val = TREF_NIL;
rec_idx(J, &ix); /* Remove value. */
} else {
rd->nres = 0;
}
} else { /* Complex case: remove in the middle. */
recff_err_nyi(J, rd);
}
} /* else: Interpreter will throw. */
}
static void recff_table_insert(jit_State *J, TRef *res, RecordFFData *rd)
{
rd->nres = 0;
if (tref_istab(arg[0]) && arg[1]) {
if (!arg[2]) { /* Simple push: t[#t+1] = v */
TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, arg[0]);
GCtab *t = tabV(&rd->argv[0]);
RecordIndex ix;
ix.tab = arg[0];
ix.val = arg[1];
ix.key = emitir(IRTI(IR_ADD), trlen, lj_ir_kint(J, 1));
settabV(J->L, &ix.tabv, t);
setintV(&ix.keyv, lj_tab_len(t) + 1);
ix.idxchain = 0;
rec_idx(J, &ix); /* Set new value. */
} else { /* Complex case: insert in the middle. */
recff_err_nyi(J, rd);
}
} /* else: Interpreter will throw. */
}
/* -- I/O library fast functions ------------------------------------------ */
/* Get FILE* for I/O function. Any I/O error aborts recording, so there's
** no need to encode the alternate cases for any of the guards.
*/
static TRef recff_io_fp(jit_State *J, TRef *res, uint32_t id)
{
TRef tr, ud, fp;
if (id) { /* io.func() */
tr = lj_ir_kptr(J, &J2G(J)->gcroot[id]);
ud = emitir(IRT(IR_XLOAD, IRT_UDATA), tr, 0);
} else { /* fp:method() */
ud = arg[0];
if (!tref_isudata(ud))
lj_trace_err(J, LJ_TRERR_BADTYPE);
tr = emitir(IRT(IR_FLOAD, IRT_U8), ud, IRFL_UDATA_UDTYPE);
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, UDTYPE_IO_FILE));
}
fp = emitir(IRT(IR_FLOAD, IRT_LIGHTUD), ud, IRFL_UDATA_FILE);
emitir(IRTG(IR_NE, IRT_LIGHTUD), fp, lj_ir_knull(J, IRT_LIGHTUD));
return fp;
}
static void recff_io_write(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef fp = recff_io_fp(J, res, rd->data);
TRef zero = lj_ir_kint(J, 0);
TRef one = lj_ir_kint(J, 1);
ptrdiff_t i = rd->data == 0 ? 1 : 0;
for (; arg[i]; i++) {
TRef str = lj_ir_tostr(J, arg[i]);
TRef buf = emitir(IRT(IR_STRREF, IRT_PTR), str, zero);
TRef len = emitir(IRTI(IR_FLOAD), str, IRFL_STR_LEN);
if (tref_isk(len) && IR(tref_ref(len))->i == 1) {
TRef tr = emitir(IRT(IR_XLOAD, IRT_U8), buf, IRXLOAD_READONLY);
tr = lj_ir_call(J, IRCALL_fputc, tr, fp);
if (rd->cres != 0) /* Check result only if requested. */
emitir(IRTGI(IR_NE), tr, lj_ir_kint(J, -1));
} else {
TRef tr = lj_ir_call(J, IRCALL_fwrite, buf, one, len, fp);
if (rd->cres != 0) /* Check result only if requested. */
emitir(IRTGI(IR_EQ), tr, len);
}
}
res[0] = TREF_TRUE;
}
static void recff_io_flush(jit_State *J, TRef *res, RecordFFData *rd)
{
TRef fp = recff_io_fp(J, res, rd->data);
TRef tr = lj_ir_call(J, IRCALL_fflush, fp);
if (rd->cres != 0) /* Check result only if requested. */
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, 0));
res[0] = TREF_TRUE;
}
/* -- Record calls and returns -------------------------------------------- */
#undef arg
#include "lj_recdef.h"
/* Record return. */
static void rec_ret(jit_State *J, BCReg rbase, int gotresults)
{
TValue *frame = J->L->base - 1;
TRef *res = J->base + rbase;
J->tailcalled = 0;
while (frame_ispcall(frame)) {
BCReg cbase = (BCReg)frame_delta(frame);
if (J->framedepth-- <= 0)
lj_trace_err(J, LJ_TRERR_NYIRETL);
lua_assert(J->baseslot > 1);
J->baseslot -= (BCReg)cbase;
J->base -= cbase;
*--res = TREF_TRUE; /* Prepend true to results. */
gotresults++;
frame = frame_prevd(frame);
}
if (J->framedepth-- <= 0)
lj_trace_err(J, LJ_TRERR_NYIRETL);
lua_assert(J->baseslot > 1);
if (frame_islua(frame)) {
BCIns callins = *(J->pc = frame_pc(frame)-1);
ptrdiff_t nresults = bc_b(callins) ? (int)bc_b(callins)-1 : gotresults;
BCReg cbase = bc_a(callins);
int i;
for (i = 0; i < nresults; i++)
J->base[i-1] = i < gotresults ? res[i] : TREF_NIL;
J->maxslot = cbase+(BCReg)nresults;
J->baseslot -= cbase+1;
J->base -= cbase+1;
} else if (frame_iscont(frame)) {
ASMFunction cont = frame_contf(frame);
BCReg i, cbase = (BCReg)frame_delta(frame);
J->pc = frame_contpc(frame)-1;
J->baseslot -= (BCReg)cbase;
J->base -= cbase;
/* Shrink maxslot as much as possible after return from continuation. */
for (i = cbase-2; i > 0 && J->base[i] == 0; i--) ;
J->maxslot = i;
if (cont == lj_cont_ra) {
/* Copy result to destination slot. */
BCReg dst = bc_a(*J->pc);
J->base[dst] = res[0];
if (dst > J->maxslot) J->maxslot = dst+1;
} else if (cont == lj_cont_nop) {
/* Nothing to do here. */
} else if (cont == lj_cont_cat) {
lua_assert(0);
} else {
/* Result type already specialized. */
lua_assert(cont == lj_cont_condf || cont == lj_cont_condt);
}
} else {
lua_assert(0);
}
lua_assert(J->baseslot >= 1);
}
/* Check unroll limits for calls. */
static void check_call_unroll(jit_State *J, GCfunc *fn)
{
TValue *first = J->L->base - J->baseslot;
TValue *frame = J->L->base - 1;
int count = 0;
while (frame > first) {
if (frame_func(frame) == fn)
count++;
if (frame_isvarg(frame))
frame = frame_prevd(frame);
frame = frame_prev(frame);
}
if (frame_func(first) == fn && bc_op(J->cur.startins) == BC_CALL) {
if (count >= J->param[JIT_P_recunroll])
lj_trace_err(J, LJ_TRERR_NYIRECU);
} else {
if (count >= J->param[JIT_P_callunroll])
lj_trace_err(J, LJ_TRERR_CUNROLL);
}
}
/* Record call. Returns 0 for pending calls and 1 for resolved calls. */
static int rec_call(jit_State *J, BCReg func, int cres, int nargs)
{
RecordFFData rd;
TRef *res = &J->base[func];
TValue *tv = &J->L->base[func];
if (tref_isfunc(res[0])) { /* Regular function call. */
rd.fn = funcV(tv);
rd.argv = tv+1;
} else { /* Otherwise resolve __call metamethod for called object. */
RecordIndex ix;
int i;
ix.tab = res[0];
copyTV(J->L, &ix.tabv, tv);
if (!rec_mm_lookup(J, &ix, MM_call) || !tref_isfunc(ix.mobj))
lj_trace_err(J, LJ_TRERR_NOMM);
/* Update the recorder state, but not the Lua stack. */
for (i = ++nargs; i > 0; i--)
res[i] = res[i-1];
res[0] = ix.mobj;
rd.fn = funcV(&ix.mobjv);
rd.argv = tv; /* The called object is the 1st arg. */
}
/* Specialize to the runtime value of the called function. */
res[0] = emitir(IRTG(IR_FRAME, IRT_FUNC), res[0], lj_ir_kfunc(J, rd.fn));
if (isluafunc(rd.fn)) { /* Record call to Lua function. */
GCproto *pt = funcproto(rd.fn);
if ((pt->flags & PROTO_NO_JIT))
lj_trace_err(J, LJ_TRERR_CJITOFF);
if ((pt->flags & PROTO_IS_VARARG)) {
if (rd.fn->l.gate != lj_gate_lv)
lj_trace_err(J, LJ_TRERR_NYILNKF);
lj_trace_err(J, LJ_TRERR_NYIVF);
} else {
if (rd.fn->l.gate != lj_gate_lf)
lj_trace_err(J, LJ_TRERR_NYILNKF);
}
check_call_unroll(J, rd.fn);
if (cres == CALLRES_TAILCALL) {
int i;
/* Tailcalls can form a loop, so count towards the loop unroll limit. */
if (++J->tailcalled > J->loopunroll)
lj_trace_err(J, LJ_TRERR_LUNROLL);
for (i = 0; i <= nargs; i++) /* Move func + args down. */
J->base[i-1] = res[i];
/* Note: the new FRAME is now at J->base[-1] (even for slot #0). */
} else { /* Regular call. */
J->base += func+1;
J->baseslot += func+1;
J->framedepth++;
}
if (J->baseslot + pt->framesize >= LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
/* Fill up missing args with nil. */
while (nargs < pt->numparams)
J->base[nargs++] = TREF_NIL;
/* The remaining slots should never be read before they are written. */
J->maxslot = pt->numparams;
return 0; /* No result yet. */
} else { /* Record call to C function or fast function. */
uint32_t m = 0;
res[1+nargs] = 0;
rd.nargs = nargs;
if (rd.fn->c.ffid < sizeof(recff_idmap)/sizeof(recff_idmap[0]))
m = recff_idmap[rd.fn->c.ffid];
rd.data = m & 0xff;
rd.cres = cres;
rd.nres = 1; /* Default is one result. */
(recff_func[m >> 8])(J, res, &rd); /* Call recff_* handler. */
cres = rd.cres;
if (cres >= 0) {
/* Caller takes fixed number of results: local a,b = f() */
J->maxslot = func + (BCReg)cres;
while (rd.nres < cres) /* Fill up missing results with nil. */
res[rd.nres++] = TREF_NIL;
} else if (cres == CALLRES_MULTI) {
/* Caller takes any number of results: return 1,f() */
J->maxslot = func + (BCReg)rd.nres;
} else if (cres == CALLRES_TAILCALL) {
/* Tail call: return f() */
rec_ret(J, func, rd.nres);
} else if (cres == CALLRES_CONT) {
/* Note: immediately resolved continuations must not change J->maxslot. */
res[rd.nres] = TREF_NIL; /* Turn 0 results into nil result. */
} else {
J->framedepth++;
lua_assert(cres == CALLRES_PENDING);
return 0; /* Pending call, no result yet. */
}
return 1; /* Result resolved immediately. */
}
}
/* -- Record allocations -------------------------------------------------- */
static TRef rec_tnew(jit_State *J, uint32_t ah)
{
uint32_t asize = ah & 0x7ff;
uint32_t hbits = ah >> 11;
if (asize == 0x7ff) asize = 0x801;
return emitir(IRT(IR_TNEW, IRT_TAB), asize, hbits);
}
/* -- Record bytecode ops ------------------------------------------------- */
/* Optimize state after comparison. */
static void optstate_comp(jit_State *J, int cond)
{
BCIns jmpins = J->pc[1];
const BCIns *npc = J->pc + 2 + (cond ? bc_j(jmpins) : 0);
SnapShot *snap = &J->cur.snap[J->cur.nsnap-1];
/* Avoid re-recording the comparison in side traces. */
J->cur.snapmap[snap->mapofs + snap->nent] = SNAP_MKPC(npc);
J->needsnap = 1;
/* Shrink last snapshot if possible. */
if (bc_a(jmpins) < J->maxslot) {
J->maxslot = bc_a(jmpins);
lj_snap_shrink(J);
}
}
/* Record the next bytecode instruction (_before_ it's executed). */
void lj_record_ins(jit_State *J)
{
cTValue *lbase;
RecordIndex ix;
const BCIns *pc;
BCIns ins;
BCOp op;
TRef ra, rb, rc;
/* Need snapshot before recording next bytecode (e.g. after a store). */
if (J->needsnap) {
J->needsnap = 0;
lj_snap_add(J);
J->mergesnap = 1;
}
/* Record only closed loops for root traces. */
pc = J->pc;
if (J->framedepth == 0 &&
(MSize)((char *)pc - (char *)J->bc_min) >= J->bc_extent)
lj_trace_err(J, LJ_TRERR_LLEAVE);
#ifdef LUA_USE_ASSERT
rec_check_slots(J);
rec_check_ir(J);
#endif
/* Keep a copy of the runtime values of var/num/str operands. */
#define rav (&ix.valv)
#define rbv (&ix.tabv)
#define rcv (&ix.keyv)
lbase = J->L->base;
ins = *pc;
op = bc_op(ins);
ra = bc_a(ins);
ix.val = 0;
switch (bcmode_a(op)) {
case BCMvar:
copyTV(J->L, rav, &lbase[ra]); ix.val = ra = getslot(J, ra); break;
default: break; /* Handled later. */
}
rb = bc_b(ins);
rc = bc_c(ins);
switch (bcmode_b(op)) {
case BCMnone: rb = 0; rc = bc_d(ins); break; /* Upgrade rc to 'rd'. */
case BCMvar:
copyTV(J->L, rbv, &lbase[rb]); ix.tab = rb = getslot(J, rb); break;
case BCMnum: { lua_Number n = J->pt->k.n[rb];
setnumV(rbv, n); ix.tab = rb = lj_ir_knumint(J, n); } break;
default: break; /* Handled later. */
}
switch (bcmode_c(op)) {
case BCMvar:
copyTV(J->L, rcv, &lbase[rc]); ix.key = rc = getslot(J, rc); break;
case BCMpri: setitype(rcv, (int32_t)~rc); rc = TREF_PRI(IRT_NIL+rc); break;
case BCMnum: { lua_Number n = J->pt->k.n[rc];
setnumV(rcv, n); ix.key = rc = lj_ir_knumint(J, n); } break;
case BCMstr: { GCstr *s = strref(J->pt->k.gc[~(ptrdiff_t)rc]);
setstrV(J->L, rcv, s); ix.key = rc = lj_ir_kstr(J, s); } break;
default: break; /* Handled later. */
}
switch (op) {
/* -- Comparison ops ---------------------------------------------------- */
case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
/* Emit nothing for two numeric or string consts. */
if (!(tref_isk2(ra,rc) && tref_isnumber_str(ra) && tref_isnumber_str(rc))) {
IRType ta = tref_isinteger(ra) ? IRT_INT : tref_type(ra);
IRType tc = tref_isinteger(rc) ? IRT_INT : tref_type(rc);
int irop;
if (ta != tc) {
/* Widen mixed number/int comparisons to number/number comparison. */
if (ta == IRT_INT && tc == IRT_NUM) {
ra = emitir(IRTN(IR_TONUM), ra, 0);
ta = IRT_NUM;
} else if (ta == IRT_NUM && tc == IRT_INT) {
rc = emitir(IRTN(IR_TONUM), rc, 0);
} else if (!((ta == IRT_FALSE || ta == IRT_TRUE) &&
(tc == IRT_FALSE || tc == IRT_TRUE))) {
break; /* Interpreter will throw for two different types. */
}
}
lj_snap_add(J);
irop = (int)op - (int)BC_ISLT + (int)IR_LT;
if (ta == IRT_NUM) {
if ((irop & 1)) irop ^= 4; /* ISGE/ISGT are unordered. */
if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 5;
} else if (ta == IRT_INT) {
if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 1;
} else if (ta == IRT_STR) {
if (!lj_ir_strcmp(strV(rav), strV(rcv), (IROp)irop)) irop ^= 1;
ra = lj_ir_call(J, IRCALL_lj_str_cmp, ra, rc);
rc = lj_ir_kint(J, 0);
ta = IRT_INT;
} else {
rec_mm_comp(J, &ix, (int)op);
break;
}
emitir(IRTG(irop, ta), ra, rc);
optstate_comp(J, ((int)op ^ irop) & 1);
}
break;
case BC_ISEQV: case BC_ISNEV:
case BC_ISEQS: case BC_ISNES:
case BC_ISEQN: case BC_ISNEN:
case BC_ISEQP: case BC_ISNEP:
/* Emit nothing for two non-table, non-udata consts. */
if (!(tref_isk2(ra, rc) && !(tref_istab(ra) || tref_isudata(ra)))) {
int diff;
lj_snap_add(J);
diff = rec_objcmp(J, ra, rc, rav, rcv);
if (diff == 1 && (tref_istab(ra) || tref_isudata(ra))) {
/* Only check __eq if different, but the same type (table or udata). */
rec_mm_equal(J, &ix, (int)op);
break;
}
optstate_comp(J, ((int)op & 1) == !diff);
}
break;
/* -- Unary test and copy ops ------------------------------------------- */
case BC_ISTC: case BC_ISFC:
if ((op & 1) == tref_istruecond(rc))
rc = 0; /* Don't store if condition is not true. */
/* fallthrough */
case BC_IST: case BC_ISF: /* Type specialization suffices. */
if (bc_a(pc[1]) < J->maxslot)
J->maxslot = bc_a(pc[1]); /* Shrink used slots. */
break;
/* -- Unary ops --------------------------------------------------------- */
case BC_NOT:
/* Type specialization already forces const result. */
rc = tref_istruecond(rc) ? TREF_FALSE : TREF_TRUE;
break;
case BC_LEN:
if (tref_isstr(rc)) {
rc = emitir(IRTI(IR_FLOAD), rc, IRFL_STR_LEN);
} else if (tref_istab(rc)) {
rc = lj_ir_call(J, IRCALL_lj_tab_len, rc);
} else {
ix.tab = rc;
copyTV(J->L, &ix.tabv, &ix.keyv);
ix.key = IRT_NIL;
setnilV(&ix.keyv);
rc = rec_mm_arith(J, &ix, MM_len);
}
break;
/* -- Arithmetic ops ---------------------------------------------------- */
case BC_UNM:
if (tref_isnumber_str(rc)) {
rc = lj_ir_tonum(J, rc);
rc = emitir(IRTN(IR_NEG), rc, lj_ir_knum_neg(J));
} else {
ix.tab = rc;
copyTV(J->L, &ix.tabv, &ix.keyv);
rc = rec_mm_arith(J, &ix, MM_unm);
}
break;
case BC_ADDNV: case BC_SUBNV: case BC_MULNV: case BC_DIVNV: case BC_MODNV:
ix.tab = rc; ix.key = rc = rb; rb = ix.tab;
copyTV(J->L, &ix.valv, &ix.tabv);
copyTV(J->L, &ix.tabv, &ix.keyv);
copyTV(J->L, &ix.keyv, &ix.valv);
if (op == BC_MODNV)
goto recmod;
/* fallthrough */
case BC_ADDVN: case BC_SUBVN: case BC_MULVN: case BC_DIVVN:
case BC_ADDVV: case BC_SUBVV: case BC_MULVV: case BC_DIVVV: {
MMS mm = bcmode_mm(op);
if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) {
rb = lj_ir_tonum(J, rb);
rc = lj_ir_tonum(J, rc);
rc = emitir(IRTN((int)mm - (int)MM_add + (int)IR_ADD), rb, rc);
} else {
rc = rec_mm_arith(J, &ix, mm);
}
break;
}
case BC_MODVN: case BC_MODVV:
recmod:
if (tref_isnumber_str(rb) && tref_isnumber_str(rc))
rc = lj_opt_narrow_mod(J, rb, rc);
else
rc = rec_mm_arith(J, &ix, MM_mod);
break;
case BC_POW:
if (tref_isnumber_str(rb) && tref_isnumber_str(rc))
rc = lj_opt_narrow_pow(J, lj_ir_tonum(J, rb), rc, rcv);
else
rc = rec_mm_arith(J, &ix, MM_pow);
break;
/* -- Constant and move ops --------------------------------------------- */
case BC_KSTR: case BC_KNUM: case BC_KPRI: case BC_MOV:
break;
case BC_KSHORT:
rc = lj_ir_kint(J, (int32_t)(int16_t)rc);
break;
case BC_KNIL:
while (ra <= rc)
J->base[ra++] = TREF_NIL;
if (rc >= J->maxslot) J->maxslot = rc+1;
break;
/* -- Upvalue and function ops ------------------------------------------ */
case BC_UGET:
rc = rec_upvalue(J, rc, 0);
break;
case BC_USETV: case BC_USETS: case BC_USETN: case BC_USETP:
rec_upvalue(J, ra, rc);
break;
/* -- Table ops --------------------------------------------------------- */
case BC_GGET: case BC_GSET:
settabV(J->L, &ix.tabv, tabref(J->fn->l.env));
ix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), getcurrf(J), IRFL_FUNC_ENV);
ix.idxchain = LJ_MAX_IDXCHAIN;
rc = rec_idx(J, &ix);
break;
case BC_TGETB: case BC_TSETB:
setintV(&ix.keyv, (int32_t)rc);
ix.key = lj_ir_kint(J, (int32_t)rc);
/* fallthrough */
case BC_TGETV: case BC_TGETS: case BC_TSETV: case BC_TSETS:
ix.idxchain = LJ_MAX_IDXCHAIN;
rc = rec_idx(J, &ix);
break;
case BC_TNEW:
rc = rec_tnew(J, rc);
break;
case BC_TDUP:
rc = emitir(IRT(IR_TDUP, IRT_TAB),
lj_ir_ktab(J, tabref(J->pt->k.gc[~(ptrdiff_t)rc])), 0);
break;
/* -- Calls and vararg handling ----------------------------------------- */
case BC_ITERC:
J->base[ra] = getslot(J, ra-3);
J->base[ra+1] = getslot(J, ra-2);
J->base[ra+2] = getslot(J, ra-1);
{ /* Have to do the actual copy now because rec_call needs the values. */
TValue *b = &J->L->base[ra];
copyTV(J->L, b, b-3);
copyTV(J->L, b+1, b-2);
copyTV(J->L, b+2, b-1);
}
goto callop;
case BC_CALLMT:
rb = (TRef)(CALLRES_TAILCALL+1);
/* fallthrough */
case BC_CALLM:
/* L->top is set to L->base+ra+rc+NRESULTS-1+1, see lj_dispatch_ins(). */
rc = (BCReg)(J->L->top - J->L->base) - ra;
goto callop;
case BC_CALLT:
rb = (TRef)(CALLRES_TAILCALL+1);
/* fallthrough */
case BC_CALL:
callop:
rec_call(J, ra, (int)(rb-1), (int)(rc-1));
break;
/* -- Returns ----------------------------------------------------------- */
case BC_RETM:
/* L->top is set to L->base+ra+rc+NRESULTS-1, see lj_dispatch_ins(). */
rc = (BCReg)(J->L->top - J->L->base) - ra + 1;
/* fallthrough */
case BC_RET: case BC_RET0: case BC_RET1:
rec_ret(J, ra, (int)(rc-1));
break;
/* -- Loops and branches ------------------------------------------------ */
case BC_FORI:
if (rec_for(J, pc, 0) != LOOPEV_LEAVE)
J->loopref = J->cur.nins;
break;
case BC_JFORI:
lua_assert(bc_op(pc[(ptrdiff_t)rc-BCBIAS_J]) == BC_JFORL);
if (rec_for(J, pc, 0) != LOOPEV_LEAVE) /* Link to existing loop. */
rec_stop(J, bc_d(pc[(ptrdiff_t)rc-BCBIAS_J]));
/* Continue tracing if the loop is not entered. */
break;
case BC_FORL:
rec_loop_interp(J, pc, rec_for(J, pc+((ptrdiff_t)rc-BCBIAS_J), 1));
break;
case BC_ITERL:
rec_loop_interp(J, pc, rec_iterl(J, *pc));
break;
case BC_LOOP:
rec_loop_interp(J, pc, rec_loop(J, ra));
break;
case BC_JFORL:
rec_loop_jit(J, rc, rec_for(J, pc+bc_j(J->trace[rc]->startins), 1));
break;
case BC_JITERL:
rec_loop_jit(J, rc, rec_iterl(J, J->trace[rc]->startins));
break;
case BC_JLOOP:
rec_loop_jit(J, rc, rec_loop(J, ra));
break;
case BC_IFORL:
case BC_IITERL:
case BC_ILOOP:
lj_trace_err(J, LJ_TRERR_LBLACKL);
break;
case BC_JMP:
if (ra < J->maxslot)
J->maxslot = ra; /* Shrink used slots. */
break;
case BC_CAT:
case BC_UCLO:
case BC_FNEW:
case BC_TSETM:
case BC_VARG:
default:
setintV(&J->errinfo, (int32_t)op);
lj_trace_err_info(J, LJ_TRERR_NYIBC);
break;
}
/* rc == 0 if we have no result yet, e.g. pending __index metamethod call. */
if (bcmode_a(op) == BCMdst && rc) {
J->base[ra] = rc;
if (ra >= J->maxslot) J->maxslot = ra+1;
}
#undef rav
#undef rbv
#undef rcv
/* Limit the number of recorded IR instructions. */
if (J->cur.nins > REF_FIRST+(IRRef)J->param[JIT_P_maxrecord])
lj_trace_err(J, LJ_TRERR_TRACEOV);
}
/* -- Recording setup ----------------------------------------------------- */
/* Setup recording for a FORL loop. */
static void rec_setup_forl(jit_State *J, const BCIns *fori)
{
BCReg ra = bc_a(*fori);
cTValue *forbase = &J->L->base[ra];
IRType t = (J->flags & JIT_F_OPT_NARROW) ? lj_opt_narrow_forl(forbase)
: IRT_NUM;
TRef stop = fori_arg(J, fori-2, ra+FORL_STOP, t);
TRef step = fori_arg(J, fori-1, ra+FORL_STEP, t);
int dir = (0 <= numV(&forbase[FORL_STEP]));
lua_assert(bc_op(*fori) == BC_FORI || bc_op(*fori) == BC_JFORI);
if (!tref_isk(step)) {
/* Non-constant step: need a guard for the direction. */
TRef zero = (t == IRT_INT) ? lj_ir_kint(J, 0) : lj_ir_knum_zero(J);
emitir(IRTG(dir ? IR_GE : IR_LT, t), step, zero);
/* Add hoistable overflow checks for a narrowed FORL index. */
if (t == IRT_INT) {
if (tref_isk(stop)) {
/* Constant stop: optimize check away or to a range check for step. */
int32_t k = IR(tref_ref(stop))->i;
if (dir) {
if (k > 0)
emitir(IRTGI(IR_LE), step, lj_ir_kint(J, (int32_t)0x7fffffff-k));
} else {
if (k < 0)
emitir(IRTGI(IR_GE), step, lj_ir_kint(J, (int32_t)0x80000000-k));
}
} else {
/* Stop+step variable: need full overflow check (with dead result). */
emitir(IRTGI(IR_ADDOV), step, stop);
}
}
} else if (t == IRT_INT && !tref_isk(stop)) {
/* Constant step: optimize overflow check to a range check for stop. */
int32_t k = IR(tref_ref(step))->i;
k = (int32_t)(dir ? 0x7fffffff : 0x80000000) - k;
emitir(IRTGI(dir ? IR_LE : IR_GE), stop, lj_ir_kint(J, k));
}
if (t == IRT_INT)
t |= IRT_GUARD;
J->base[ra+FORL_EXT] = sloadt(J, (int32_t)(ra+FORL_IDX), t, IRSLOAD_INHERIT);
J->maxslot = ra+FORL_EXT+1;
}
/* Setup recording for a root trace started by a hot loop. */
static const BCIns *rec_setup_root(jit_State *J)
{
/* Determine the next PC and the bytecode range for the loop. */
const BCIns *pcj, *pc = J->pc;
BCIns ins = *pc;
BCReg ra = bc_a(ins);
switch (bc_op(ins)) {
case BC_FORL:
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
pc += 1+bc_j(ins);
J->bc_min = pc;
break;
case BC_ITERL:
lua_assert(bc_op(pc[-1]) == BC_ITERC);
J->maxslot = ra + bc_b(pc[-1]) - 1;
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
pc += 1+bc_j(ins);
lua_assert(bc_op(pc[-1]) == BC_JMP);
J->bc_min = pc;
break;
case BC_LOOP:
/* Only check BC range for real loops, but not for "repeat until true". */
pcj = pc + bc_j(ins);
ins = *pcj;
if (bc_op(ins) == BC_JMP && bc_j(ins) < 0) {
J->bc_min = pcj+1 + bc_j(ins);
J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns);
}
J->maxslot = ra;
pc++;
break;
default:
lua_assert(0);
break;
}
return pc;
}
/* Setup recording for a side trace. */
static void rec_setup_side(jit_State *J, Trace *T)
{
SnapShot *snap = &T->snap[J->exitno];
SnapEntry *map = &T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
BloomFilter seen = 0;
/* Emit IR for slots inherited from parent snapshot. */
for (n = 0; n < nent; n++) {
IRRef ref = snap_ref(map[n]);
BCReg s = snap_slot(map[n]);
IRIns *ir = &T->ir[ref];
TRef tr;
/* The bloom filter avoids O(nent^2) overhead for de-duping slots. */
if (bloomtest(seen, ref)) {
MSize j;
for (j = 0; j < n; j++)
if (snap_ref(map[j]) == ref) {
tr = J->slot[snap_slot(map[j])];
if (ir->o == IR_FRAME && irt_isfunc(ir->t)) {
lua_assert(s != 0);
J->baseslot = s+1;
J->framedepth++;
}
goto dupslot;
}
}
bloomset(seen, ref);
switch ((IROp)ir->o) {
/* Only have to deal with constants that can occur in stack slots. */
case IR_KPRI: tr = TREF_PRI(irt_type(ir->t)); break;
case IR_KINT: tr = lj_ir_kint(J, ir->i); break;
case IR_KGC: tr = lj_ir_kgc(J, ir_kgc(ir), irt_t(ir->t)); break;
case IR_KNUM: tr = lj_ir_knum_addr(J, ir_knum(ir)); break;
case IR_FRAME: /* Placeholder FRAMEs don't need a guard. */
if (irt_isfunc(ir->t)) {
if (s != 0) {
J->baseslot = s+1;
J->framedepth++;
}
tr = lj_ir_kfunc(J, ir_kfunc(&T->ir[ir->op2]));
tr = emitir_raw(IRT(IR_FRAME, IRT_FUNC), tr, tr);
} else {
tr = lj_ir_kptr(J, mref(T->ir[ir->op2].ptr, void));
tr = emitir_raw(IRT(IR_FRAME, IRT_PTR), tr, tr);
}
break;
case IR_SLOAD: /* Inherited SLOADs don't need a guard or type check. */
tr = emitir_raw(ir->ot & ~IRT_GUARD, s,
(ir->op2&IRSLOAD_READONLY) | IRSLOAD_INHERIT|IRSLOAD_PARENT);
break;
default: /* Parent refs are already typed and don't need a guard. */
tr = emitir_raw(IRT(IR_SLOAD, irt_type(ir->t)), s,
IRSLOAD_INHERIT|IRSLOAD_PARENT);
break;
}
dupslot:
J->slot[s] = tr;
}
J->base = J->slot + J->baseslot;
J->maxslot = snap->nslots - J->baseslot;
lj_snap_add(J);
}
/* Setup for recording a new trace. */
void lj_record_setup(jit_State *J)
{
uint32_t i;
/* Initialize state related to current trace. */
memset(J->slot, 0, sizeof(J->slot));
memset(J->chain, 0, sizeof(J->chain));
memset(J->bpropcache, 0, sizeof(J->bpropcache));
J->baseslot = 1; /* Invoking function is at base[-1]. */
J->base = J->slot + J->baseslot;
J->maxslot = 0;
J->framedepth = 0;
J->instunroll = J->param[JIT_P_instunroll];
J->loopunroll = J->param[JIT_P_loopunroll];
J->tailcalled = 0;
J->loopref = 0;
J->bc_min = NULL; /* Means no limit. */
J->bc_extent = ~(MSize)0;
/* Emit instructions for fixed references. Also triggers initial IR alloc. */
emitir_raw(IRT(IR_BASE, IRT_PTR), J->parent, J->exitno);
for (i = 0; i <= 2; i++) {
IRIns *ir = IR(REF_NIL-i);
ir->i = 0;
ir->t.irt = (uint8_t)(IRT_NIL+i);
ir->o = IR_KPRI;
ir->prev = 0;
}
J->cur.nk = REF_TRUE;
setgcref(J->cur.startpt, obj2gco(J->pt));
J->startpc = J->pc;
if (J->parent) { /* Side trace. */
Trace *T = J->trace[J->parent];
TraceNo root = T->root ? T->root : J->parent;
J->cur.root = (uint16_t)root;
J->cur.startins = BCINS_AD(BC_JMP, 0, 0);
/* Check whether we could at least potentially form an extra loop. */
if (J->exitno == 0 && T->snap[0].nent == 0) {
/* We can narrow a FORL for some side traces, too. */
if (J->pc > J->pt->bc && bc_op(J->pc[-1]) == BC_JFORI &&
bc_d(J->pc[bc_j(J->pc[-1])-1]) == root) {
lj_snap_add(J);
rec_setup_forl(J, J->pc-1);
goto sidecheck;
}
} else {
J->startpc = NULL; /* Prevent forming an extra loop. */
}
rec_setup_side(J, T);
sidecheck:
if (J->trace[J->cur.root]->nchild >= J->param[JIT_P_maxside] ||
T->snap[J->exitno].count >= J->param[JIT_P_hotexit] +
J->param[JIT_P_tryside])
rec_stop(J, TRACE_INTERP);
} else { /* Root trace. */
J->cur.root = 0;
if (J->pc >= J->pt->bc) { /* Not a hot CALL? */
J->cur.startins = *J->pc;
J->pc = rec_setup_root(J);
/* Note: the loop instruction itself is recorded at the end and not
** at the start! So snapshot #0 needs to point to the *next* instruction.
*/
} else {
J->cur.startins = BCINS_ABC(BC_CALL, 0, 0, 0);
}
lj_snap_add(J);
if (bc_op(J->cur.startins) == BC_FORL)
rec_setup_forl(J, J->pc-1);
if (1 + J->pt->framesize >= LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
}
}
#undef IR
#undef emitir_raw
#undef emitir
#endif