/* ** IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h */ #define lj_asm_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_mcode.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_snap.h" #include "lj_asm.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_target.h" /* -- Assembler state and common macros ----------------------------------- */ /* Assembler state. */ typedef struct ASMState { RegCost cost[RID_MAX]; /* Reference and blended allocation cost for regs. */ MCode *mcp; /* Current MCode pointer (grows down). */ MCode *mclim; /* Lower limit for MCode memory + red zone. */ IRIns *ir; /* Copy of pointer to IR instructions/constants. */ jit_State *J; /* JIT compiler state. */ x86ModRM mrm; /* Fused x86 address operand. */ RegSet freeset; /* Set of free registers. */ RegSet modset; /* Set of registers modified inside the loop. */ RegSet weakset; /* Set of weakly referenced registers. */ RegSet phiset; /* Set of PHI registers. */ uint32_t flags; /* Copy of JIT compiler flags. */ int loopinv; /* Loop branch inversion (0:no, 1:yes, 2:yes+CC_P). */ int32_t evenspill; /* Next even spill slot. */ int32_t oddspill; /* Next odd spill slot (or 0). */ IRRef curins; /* Reference of current instruction. */ IRRef stopins; /* Stop assembly before hitting this instruction. */ IRRef orignins; /* Original T->nins. */ IRRef snapref; /* Current snapshot is active after this reference. */ IRRef snaprename; /* Rename highwater mark for snapshot check. */ SnapNo snapno; /* Current snapshot number. */ SnapNo loopsnapno; /* Loop snapshot number. */ IRRef fuseref; /* Fusion limit (loopref, 0 or FUSE_DISABLED). */ IRRef sectref; /* Section base reference (loopref or 0). */ IRRef loopref; /* Reference of LOOP instruction (or 0). */ BCReg topslot; /* Number of slots for stack check (unless 0). */ MSize gcsteps; /* Accumulated number of GC steps (per section). */ GCtrace *T; /* Trace to assemble. */ GCtrace *parent; /* Parent trace (or NULL). */ MCode *mcbot; /* Bottom of reserved MCode. */ MCode *mctop; /* Top of generated MCode. */ MCode *mcloop; /* Pointer to loop MCode (or NULL). */ MCode *invmcp; /* Points to invertible loop branch (or NULL). */ MCode *testmcp; /* Pending opportunity to remove test r,r. */ MCode *realign; /* Realign loop if not NULL. */ IRRef1 phireg[RID_MAX]; /* PHI register references. */ uint16_t parentmap[LJ_MAX_JSLOTS]; /* Parent slot to RegSP map. */ } ASMState; #define IR(ref) (&as->ir[(ref)]) #define ASMREF_TMP1 REF_TRUE /* Temp. register. */ #define ASMREF_TMP2 REF_FALSE /* Temp. register. */ #define ASMREF_L REF_NIL /* Stores register for L. */ /* Check for variant to invariant references. */ #define iscrossref(as, ref) ((ref) < as->sectref) /* Inhibit memory op fusion from variant to invariant references. */ #define FUSE_DISABLED (~(IRRef)0) #define mayfuse(as, ref) ((ref) > as->fuseref) #define neverfuse(as) (as->fuseref == FUSE_DISABLED) #define opisfusableload(o) \ ((o) == IR_ALOAD || (o) == IR_HLOAD || (o) == IR_ULOAD || \ (o) == IR_FLOAD || (o) == IR_XLOAD || (o) == IR_SLOAD || (o) == IR_VLOAD) /* Instruction selection for XMM moves. */ #define XMM_MOVRR(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVSD : XO_MOVAPS) #define XMM_MOVRM(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVLPD : XO_MOVSD) /* Sparse limit checks using a red zone before the actual limit. */ #define MCLIM_REDZONE 64 #define checkmclim(as) \ if (LJ_UNLIKELY(as->mcp < as->mclim)) asm_mclimit(as) static LJ_NORET LJ_NOINLINE void asm_mclimit(ASMState *as) { lj_mcode_limiterr(as->J, (size_t)(as->mctop - as->mcp + 4*MCLIM_REDZONE)); } /* -- Emit x86 instructions ----------------------------------------------- */ #define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7))) #if LJ_64 #define REXRB(p, rr, rb) \ { MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \ if (rex != 0x40) *--(p) = rex; } #define FORCE_REX 0x200 #define REX_64 (FORCE_REX|0x080000) #else #define REXRB(p, rr, rb) ((void)0) #define FORCE_REX 0 #define REX_64 0 #endif #define emit_i8(as, i) (*--as->mcp = (MCode)(i)) #define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4) #define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4) #define emit_x87op(as, xo) \ (*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2) /* op */ static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx, MCode *p, int delta) { int n = (int8_t)xo; #if defined(__GNUC__) if (__builtin_constant_p(xo) && n == -2) p[delta-2] = (MCode)(xo >> 24); else if (__builtin_constant_p(xo) && n == -3) *(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16); else #endif *(uint32_t *)(p+delta-5) = (uint32_t)xo; p += n + delta; #if LJ_64 { uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1); if (rex != 0x40) { rex |= (rr >> 16); if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); } else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; } *--p = (MCode)rex; } } #else UNUSED(rr); UNUSED(rb); UNUSED(rx); #endif return p; } /* op + modrm */ #define emit_opm(xo, mode, rr, rb, p, delta) \ (p[(delta)-1] = MODRM((mode), (rr), (rb)), \ emit_op((xo), (rr), (rb), 0, (p), (delta))) /* op + modrm + sib */ #define emit_opmx(xo, mode, scale, rr, rb, rx, p) \ (p[-1] = MODRM((scale), (rx), (rb)), \ p[-2] = MODRM((mode), (rr), RID_ESP), \ emit_op((xo), (rr), (rb), (rx), (p), -1)) /* op r1, r2 */ static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2) { MCode *p = as->mcp; as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0); } #if LJ_64 && defined(LUA_USE_ASSERT) /* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */ static int32_t ptr2addr(const void *p) { lua_assert((uintptr_t)p < (uintptr_t)0x80000000); return i32ptr(p); } #else #define ptr2addr(p) (i32ptr((p))) #endif /* op r, [addr] */ static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr) { MCode *p = as->mcp; *(int32_t *)(p-4) = ptr2addr(addr); #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5); #else as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4); #endif } /* op r, [base+ofs] */ static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ra_hasreg(rb)) { if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { *--p = (MCode)ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = ofs; mode = XM_OFS32; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { *(int32_t *)(p-4) = ofs; #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); p -= 5; rb = RID_ESP; #else p -= 4; rb = RID_EBP; #endif mode = XM_OFS0; } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } /* op r, [base+idx*scale+ofs] */ static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx, x86Mode scale, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { mode = XM_OFS8; *--p = (MCode)ofs; } else { mode = XM_OFS32; p -= 4; *(int32_t *)p = ofs; } as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p); } /* op r, i */ static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i) { MCode *p = as->mcp; x86Op xo; if (checki8(i)) { *--p = (MCode)i; xo = XG_TOXOi8(xg); } else { p -= 4; *(int32_t *)p = i; xo = XG_TOXOi(xg); } as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0); } /* op [base+ofs], i */ static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs); } #define emit_shifti(as, xg, r, i) \ (emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r))) /* op r, rm/mrm */ static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb) { MCode *p = as->mcp; x86Mode mode = XM_REG; if (rb == RID_MRM) { rb = as->mrm.base; if (rb == RID_NONE) { rb = RID_EBP; mode = XM_OFS0; p -= 4; *(int32_t *)p = as->mrm.ofs; if (as->mrm.idx != RID_NONE) goto mrmidx; #if LJ_64 *--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP); rb = RID_ESP; #endif } else { if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(as->mrm.ofs)) { *--p = (MCode)as->mrm.ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = as->mrm.ofs; mode = XM_OFS32; } if (as->mrm.idx != RID_NONE) { mrmidx: as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p); return; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) { if ((as->flags & JIT_F_LEA_AGU)) emit_rmro(as, XO_LEA, r, r, ofs); else emit_gri(as, XG_ARITHi(XOg_ADD), r, ofs); } } /* op rm/mrm, i */ static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64)); } /* -- Emit moves ---------------------------------------------------------- */ /* mov [base+ofs], i */ static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i) { emit_i32(as, i); emit_rmro(as, XO_MOVmi, 0, base, ofs); } /* mov [base+ofs], r */ #define emit_movtomro(as, r, base, ofs) \ emit_rmro(as, XO_MOVto, (r), (base), (ofs)) /* Get/set global_State fields. */ #define emit_opgl(as, xo, r, field) \ emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field) #define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r), field) #define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r), field) #define emit_setgli(as, field, i) \ (emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, field)) /* mov r, i / xor r, r */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { /* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */ if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP || (as->curins+1 < as->T->nins && IR(as->curins+1)->o == IR_HIOP)))) { emit_rr(as, XO_ARITH(XOg_XOR), r, r); } else { MCode *p = as->mcp; *(int32_t *)(p-4) = i; p[-5] = (MCode)(XI_MOVri+(r&7)); p -= 5; REXRB(p, 0, r); as->mcp = p; } } /* mov r, addr */ #define emit_loada(as, r, addr) \ emit_loadi(as, (r), ptr2addr((addr))) #if LJ_64 /* mov r, imm64 or shorter 32 bit extended load. */ static void emit_loadu64(ASMState *as, Reg r, uint64_t u64) { if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */ emit_loadi(as, r, (int32_t)u64); } else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */ MCode *p = as->mcp; *(int32_t *)(p-4) = (int32_t)u64; as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4); } else { /* Full-size 64 bit load. */ MCode *p = as->mcp; *(uint64_t *)(p-8) = u64; p[-9] = (MCode)(XI_MOVri+(r&7)); p[-10] = 0x48 + ((r>>3)&1); p -= 10; as->mcp = p; } } #endif /* movsd r, [&tv->n] / xorps r, r */ static void emit_loadn(ASMState *as, Reg r, cTValue *tv) { if (tvispzero(tv)) /* Use xor only for +0. */ emit_rr(as, XO_XORPS, r, r); else emit_rma(as, XMM_MOVRM(as), r, &tv->n); } /* -- Emit branches ------------------------------------------------------- */ /* Label for short jumps. */ typedef MCode *MCLabel; #if LJ_32 && LJ_HASFFI /* jmp short target */ static void emit_sjmp(ASMState *as, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = XI_JMPs; as->mcp = p - 2; } #endif /* jcc short target */ static void emit_sjcc(ASMState *as, int cc, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; } /* jcc short (pending target) */ static MCLabel emit_sjcc_label(ASMState *as, int cc) { MCode *p = as->mcp; p[-1] = 0; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; return p; } /* Fixup jcc short target. */ static void emit_sfixup(ASMState *as, MCLabel source) { source[-1] = (MCode)(as->mcp-source); } /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) /* Compute relative 32 bit offset for jump and call instructions. */ static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target) { ptrdiff_t delta = target - p; lua_assert(delta == (int32_t)delta); return (int32_t)delta; } /* jcc target */ static void emit_jcc(ASMState *as, int cc, MCode *target) { MCode *p = as->mcp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = (MCode)(XI_JCCn+(cc&15)); p[-6] = 0x0f; as->mcp = p - 6; } /* call target */ static void emit_call_(ASMState *as, MCode *target) { MCode *p = as->mcp; #if LJ_64 if (target-p != (int32_t)(target-p)) { /* Assumes RID_RET is never an argument to calls and always clobbered. */ emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET); emit_loadu64(as, RID_RET, (uint64_t)target); return; } #endif *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_CALL; as->mcp = p - 5; } #define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f)) /* -- Register allocator debugging ---------------------------------------- */ /* #define LUAJIT_DEBUG_RA */ #ifdef LUAJIT_DEBUG_RA #include #include #define RIDNAME(name) #name, static const char *const ra_regname[] = { GPRDEF(RIDNAME) FPRDEF(RIDNAME) "mrm", NULL }; #undef RIDNAME static char ra_dbg_buf[65536]; static char *ra_dbg_p; static char *ra_dbg_merge; static MCode *ra_dbg_mcp; static void ra_dstart(void) { ra_dbg_p = ra_dbg_buf; ra_dbg_merge = NULL; ra_dbg_mcp = NULL; } static void ra_dflush(void) { fwrite(ra_dbg_buf, 1, (size_t)(ra_dbg_p-ra_dbg_buf), stdout); ra_dstart(); } static void ra_dprintf(ASMState *as, const char *fmt, ...) { char *p; va_list argp; va_start(argp, fmt); p = ra_dbg_mcp == as->mcp ? ra_dbg_merge : ra_dbg_p; ra_dbg_mcp = NULL; p += sprintf(p, "%08x \e[36m%04d ", (uintptr_t)as->mcp, as->curins-REF_BIAS); for (;;) { const char *e = strchr(fmt, '$'); if (e == NULL) break; memcpy(p, fmt, (size_t)(e-fmt)); p += e-fmt; if (e[1] == 'r') { Reg r = va_arg(argp, Reg) & RID_MASK; if (r <= RID_MAX) { const char *q; for (q = ra_regname[r]; *q; q++) *p++ = *q >= 'A' && *q <= 'Z' ? *q + 0x20 : *q; } else { *p++ = '?'; lua_assert(0); } } else if (e[1] == 'f' || e[1] == 'i') { IRRef ref; if (e[1] == 'f') ref = va_arg(argp, IRRef); else ref = va_arg(argp, IRIns *) - as->ir; if (ref >= REF_BIAS) p += sprintf(p, "%04d", ref - REF_BIAS); else p += sprintf(p, "K%03d", REF_BIAS - ref); } else if (e[1] == 's') { uint32_t slot = va_arg(argp, uint32_t); p += sprintf(p, "[esp+0x%x]", sps_scale(slot)); } else { lua_assert(0); } fmt = e+2; } va_end(argp); while (*fmt) *p++ = *fmt++; *p++ = '\e'; *p++ = '['; *p++ = 'm'; *p++ = '\n'; if (p > ra_dbg_buf+sizeof(ra_dbg_buf)-256) { fwrite(ra_dbg_buf, 1, (size_t)(p-ra_dbg_buf), stdout); p = ra_dbg_buf; } ra_dbg_p = p; } #define RA_DBG_START() ra_dstart() #define RA_DBG_FLUSH() ra_dflush() #define RA_DBG_REF() \ do { char *_p = ra_dbg_p; ra_dprintf(as, ""); \ ra_dbg_merge = _p; ra_dbg_mcp = as->mcp; } while (0) #define RA_DBGX(x) ra_dprintf x #else #define RA_DBG_START() ((void)0) #define RA_DBG_FLUSH() ((void)0) #define RA_DBG_REF() ((void)0) #define RA_DBGX(x) ((void)0) #endif /* -- Register allocator -------------------------------------------------- */ #define ra_free(as, r) rset_set(as->freeset, (r)) #define ra_modified(as, r) rset_set(as->modset, (r)) #define ra_weak(as, r) rset_set(as->weakset, (r)) #define ra_noweak(as, r) rset_clear(as->weakset, (r)) #define ra_used(ir) (ra_hasreg((ir)->r) || ra_hasspill((ir)->s)) /* Setup register allocator. */ static void ra_setup(ASMState *as) { /* Initially all regs (except the stack pointer) are free for use. */ as->freeset = RSET_ALL; as->modset = RSET_EMPTY; as->weakset = RSET_EMPTY; as->phiset = RSET_EMPTY; memset(as->phireg, 0, sizeof(as->phireg)); memset(as->cost, 0, sizeof(as->cost)); as->cost[RID_ESP] = REGCOST(~0u, 0u); } /* Rematerialize constants. */ static Reg ra_rematk(ASMState *as, IRIns *ir) { Reg r = ir->r; lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s)); ra_free(as, r); ra_modified(as, r); ir->r = RID_INIT; /* Do not keep any hint. */ RA_DBGX((as, "remat $i $r", ir, r)); if (ir->o == IR_KNUM) { emit_loadn(as, r, ir_knum(ir)); } else if (ir->o == IR_BASE) { ra_sethint(ir->r, RID_BASE); /* Restore BASE register hint. */ emit_getgl(as, r, jit_base); } else if (ir->o == IR_KPRI) { /* REF_NIL stores ASMREF_L register. */ lua_assert(irt_isnil(ir->t)); emit_getgl(as, r, jit_L); #if LJ_64 } else if (ir->o == IR_KINT64) { emit_loadu64(as, r, ir_kint64(ir)->u64); #endif } else { lua_assert(ir->o == IR_KINT || ir->o == IR_KGC || ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL); emit_loadi(as, r, ir->i); } return r; } /* Force a spill. Allocate a new spill slot if needed. */ static int32_t ra_spill(ASMState *as, IRIns *ir) { int32_t slot = ir->s; if (!ra_hasspill(slot)) { if (irt_is64(ir->t)) { slot = as->evenspill; as->evenspill += 2; } else if (as->oddspill) { slot = as->oddspill; as->oddspill = 0; } else { slot = as->evenspill; as->oddspill = slot+1; as->evenspill += 2; } if (as->evenspill > 256) lj_trace_err(as->J, LJ_TRERR_SPILLOV); ir->s = (uint8_t)slot; } return sps_scale(slot); } /* Release the temporarily allocated register in ASMREF_TMP1/ASMREF_TMP2. */ static Reg ra_releasetmp(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); Reg r = ir->r; lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s)); ra_free(as, r); ra_modified(as, r); ir->r = RID_INIT; return r; } /* Use 64 bit operations to handle 64 bit IR types. */ #if LJ_64 #define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0)) #else #define REX_64IR(ir, r) (r) #endif /* Generic move between two regs. */ static void ra_movrr(ASMState *as, IRIns *ir, Reg r1, Reg r2) { UNUSED(ir); if (r1 < RID_MAX_GPR) emit_rr(as, XO_MOV, REX_64IR(ir, r1), r2); else emit_rr(as, XMM_MOVRR(as), r1, r2); } /* Restore a register (marked as free). Rematerialize or force a spill. */ static Reg ra_restore(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (irref_isk(ref) || ref == REF_BASE) { return ra_rematk(as, ir); } else { int32_t ofs = ra_spill(as, ir); /* Force a spill slot. */ Reg r = ir->r; lua_assert(ra_hasreg(r)); ra_sethint(ir->r, r); /* Keep hint. */ ra_free(as, r); if (!rset_test(as->weakset, r)) { /* Only restore non-weak references. */ ra_modified(as, r); RA_DBGX((as, "restore $i $r", ir, r)); if (r < RID_MAX_GPR) emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs); else emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, r, RID_ESP, ofs); } return r; } } /* Save a register to a spill slot. */ static void ra_save(ASMState *as, IRIns *ir, Reg r) { RA_DBGX((as, "save $i $r", ir, r)); if (r < RID_MAX_GPR) emit_rmro(as, XO_MOVto, REX_64IR(ir, r), RID_ESP, sps_scale(ir->s)); else emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, sps_scale(ir->s)); } #define MINCOST(r) \ if (LJ_LIKELY(allow&RID2RSET(r)) && as->cost[r] < cost) \ cost = as->cost[r] /* Evict the register with the lowest cost, forcing a restore. */ static Reg ra_evict(ASMState *as, RegSet allow) { IRRef ref; RegCost cost = ~(RegCost)0; lua_assert(allow != RSET_EMPTY); if (allow < RID2RSET(RID_MAX_GPR)) { MINCOST(RID_EAX);MINCOST(RID_ECX);MINCOST(RID_EDX);MINCOST(RID_EBX); MINCOST(RID_EBP);MINCOST(RID_ESI);MINCOST(RID_EDI); #if LJ_64 MINCOST(RID_R8D);MINCOST(RID_R9D);MINCOST(RID_R10D);MINCOST(RID_R11D); MINCOST(RID_R12D);MINCOST(RID_R13D);MINCOST(RID_R14D);MINCOST(RID_R15D); #endif } else { MINCOST(RID_XMM0);MINCOST(RID_XMM1);MINCOST(RID_XMM2);MINCOST(RID_XMM3); MINCOST(RID_XMM4);MINCOST(RID_XMM5);MINCOST(RID_XMM6);MINCOST(RID_XMM7); #if LJ_64 MINCOST(RID_XMM8);MINCOST(RID_XMM9);MINCOST(RID_XMM10);MINCOST(RID_XMM11); MINCOST(RID_XMM12);MINCOST(RID_XMM13);MINCOST(RID_XMM14);MINCOST(RID_XMM15); #endif } ref = regcost_ref(cost); lua_assert(ref >= as->T->nk && ref < as->T->nins); /* Preferably pick any weak ref instead of a non-weak, non-const ref. */ if (!irref_isk(ref) && (as->weakset & allow)) { IRIns *ir = IR(ref); if (!rset_test(as->weakset, ir->r)) ref = regcost_ref(as->cost[rset_pickbot((as->weakset & allow))]); } return ra_restore(as, ref); } /* Pick any register (marked as free). Evict on-demand. */ static Reg ra_pick(ASMState *as, RegSet allow) { RegSet pick = as->freeset & allow; if (!pick) return ra_evict(as, allow); else return rset_picktop(pick); } /* Get a scratch register (marked as free). */ static Reg ra_scratch(ASMState *as, RegSet allow) { Reg r = ra_pick(as, allow); ra_modified(as, r); RA_DBGX((as, "scratch $r", r)); return r; } /* Evict all registers from a set (if not free). */ static void ra_evictset(ASMState *as, RegSet drop) { as->modset |= drop; drop &= ~as->freeset; while (drop) { Reg r = rset_picktop(drop); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(drop, r); checkmclim(as); } } /* Evict (rematerialize) all registers allocated to constants. */ static void ra_evictk(ASMState *as) { RegSet work = ~as->freeset & RSET_ALL; while (work) { Reg r = rset_pickbot(work); IRRef ref = regcost_ref(as->cost[r]); if (irref_isk(ref)) { ra_rematk(as, IR(ref)); checkmclim(as); } rset_clear(work, r); } } /* Allocate a register for ref from the allowed set of registers. ** Note: this function assumes the ref does NOT have a register yet! ** Picks an optimal register, sets the cost and marks the register as non-free. */ static Reg ra_allocref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); RegSet pick = as->freeset & allow; Reg r; lua_assert(ra_noreg(ir->r)); if (pick) { /* First check register hint from propagation or PHI. */ if (ra_hashint(ir->r)) { r = ra_gethint(ir->r); if (rset_test(pick, r)) /* Use hint register if possible. */ goto found; /* Rematerialization is cheaper than missing a hint. */ if (rset_test(allow, r) && irref_isk(regcost_ref(as->cost[r]))) { ra_rematk(as, IR(regcost_ref(as->cost[r]))); goto found; } RA_DBGX((as, "hintmiss $f $r", ref, r)); } /* Invariants should preferably get unmodified registers. */ if (ref < as->loopref && !irt_isphi(ir->t)) { if ((pick & ~as->modset)) pick &= ~as->modset; r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */ } else { #if LJ_64 /* We've got plenty of regs, so get callee-save regs if possible. */ if ((pick & ~RSET_SCRATCH)) pick &= ~RSET_SCRATCH; #endif r = rset_picktop(pick); } } else { r = ra_evict(as, allow); } found: RA_DBGX((as, "alloc $f $r", ref, r)); ir->r = (uint8_t)r; rset_clear(as->freeset, r); ra_noweak(as, r); as->cost[r] = REGCOST_REF_T(ref, irt_t(ir->t)); return r; } /* Allocate a register on-demand. */ static Reg ra_alloc1(ASMState *as, IRRef ref, RegSet allow) { Reg r = IR(ref)->r; /* Note: allow is ignored if the register is already allocated. */ if (ra_noreg(r)) r = ra_allocref(as, ref, allow); ra_noweak(as, r); return r; } /* Rename register allocation and emit move. */ static void ra_rename(ASMState *as, Reg down, Reg up) { IRRef ren, ref = regcost_ref(as->cost[up] = as->cost[down]); IRIns *ir = IR(ref); ir->r = (uint8_t)up; as->cost[down] = 0; lua_assert((down < RID_MAX_GPR) == (up < RID_MAX_GPR)); lua_assert(!rset_test(as->freeset, down) && rset_test(as->freeset, up)); ra_free(as, down); /* 'down' is free ... */ ra_modified(as, down); rset_clear(as->freeset, up); /* ... and 'up' is now allocated. */ ra_noweak(as, up); RA_DBGX((as, "rename $f $r $r", regcost_ref(as->cost[up]), down, up)); ra_movrr(as, ir, down, up); /* Backwards codegen needs inverse move. */ if (!ra_hasspill(IR(ref)->s)) { /* Add the rename to the IR. */ lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), ref, as->snapno); ren = tref_ref(lj_ir_emit(as->J)); as->ir = as->T->ir; /* The IR may have been reallocated. */ IR(ren)->r = (uint8_t)down; IR(ren)->s = SPS_NONE; } } /* Pick a destination register (marked as free). ** Caveat: allow is ignored if there's already a destination register. ** Use ra_destreg() to get a specific register. */ static Reg ra_dest(ASMState *as, IRIns *ir, RegSet allow) { Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); } else { dest = ra_scratch(as, allow); } if (LJ_UNLIKELY(ra_hasspill(ir->s))) ra_save(as, ir, dest); return dest; } /* Force a specific destination register (marked as free). */ static void ra_destreg(ASMState *as, IRIns *ir, Reg r) { Reg dest = ra_dest(as, ir, RID2RSET(r)); if (dest != r) { ra_scratch(as, RID2RSET(r)); ra_movrr(as, ir, dest, r); } } /* Propagate dest register to left reference. Emit moves as needed. ** This is a required fixup step for all 2-operand machine instructions. */ static void ra_left(ASMState *as, Reg dest, IRRef lref) { IRIns *ir = IR(lref); Reg left = ir->r; if (ra_noreg(left)) { if (irref_isk(lref)) { if (ir->o == IR_KNUM) { cTValue *tv = ir_knum(ir); /* FP remat needs a load except for +0. Still better than eviction. */ if (tvispzero(tv) || !(as->freeset & RSET_FPR)) { emit_loadn(as, dest, tv); return; } #if LJ_64 } else if (ir->o == IR_KINT64) { emit_loadu64(as, dest, ir_kint64(ir)->u64); return; #endif } else { lua_assert(ir->o == IR_KINT || ir->o == IR_KGC || ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL); emit_loadi(as, dest, ir->i); return; } } if (!ra_hashint(left) && !iscrossref(as, lref)) ra_sethint(ir->r, dest); /* Propagate register hint. */ left = ra_allocref(as, lref, dest < RID_MAX_GPR ? RSET_GPR : RSET_FPR); } ra_noweak(as, left); /* Move needed for true 3-operand instruction: y=a+b ==> y=a; y+=b. */ if (dest != left) { /* Use register renaming if dest is the PHI reg. */ if (irt_isphi(ir->t) && as->phireg[dest] == lref) { ra_modified(as, left); ra_rename(as, left, dest); } else { ra_movrr(as, ir, dest, left); } } } /* -- Exit stubs ---------------------------------------------------------- */ /* Generate an exit stub group at the bottom of the reserved MCode memory. */ static MCode *asm_exitstub_gen(ASMState *as, ExitNo group) { ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff; MCode *mxp = as->mcbot; MCode *mxpstart = mxp; if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop) asm_mclimit(as); /* Push low byte of exitno for each exit stub. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs; for (i = 1; i < EXITSTUBS_PER_GROUP; i++) { *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2); *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i); } /* Push the high byte of the exitno for each exit stub group. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8); /* Store DISPATCH at original stack slot 0. Account for the two push ops. */ *mxp++ = XI_MOVmi; *mxp++ = MODRM(XM_OFS8, 0, RID_ESP); *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP); *mxp++ = 2*sizeof(void *); *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4; /* Jump to exit handler which fills in the ExitState. */ *mxp++ = XI_JMP; mxp += 4; *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler); /* Commit the code for this group (even if assembly fails later on). */ lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; return mxpstart; } /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) lj_trace_err(as->J, LJ_TRERR_SNAPOV); for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++) if (as->J->exitstubgroup[i] == NULL) as->J->exitstubgroup[i] = asm_exitstub_gen(as, i); } /* -- Snapshot and guard handling ----------------------------------------- */ /* Can we rematerialize a KNUM instead of forcing a spill? */ static int asm_snap_canremat(ASMState *as) { Reg r; for (r = RID_MIN_FPR; r < RID_MAX_FPR; r++) if (irref_isk(regcost_ref(as->cost[r]))) return 1; return 0; } /* Allocate registers or spill slots for refs escaping to a snapshot. */ static void asm_snap_alloc(ASMState *as) { SnapShot *snap = &as->T->snap[as->snapno]; SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { IRRef ref = snap_ref(map[n]); if (!irref_isk(ref)) { IRIns *ir = IR(ref); if (!ra_used(ir)) { RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR; /* Get a weak register if we have a free one or can rematerialize. */ if ((as->freeset & allow) || (allow == RSET_FPR && asm_snap_canremat(as))) { Reg r = ra_allocref(as, ref, allow); /* Allocate a register. */ if (!irt_isphi(ir->t)) ra_weak(as, r); /* But mark it as weakly referenced. */ checkmclim(as); RA_DBGX((as, "snapreg $f $r", ref, ir->r)); } else { ra_spill(as, ir); /* Otherwise force a spill slot. */ RA_DBGX((as, "snapspill $f $s", ref, ir->s)); } } } } } /* All guards for a snapshot use the same exitno. This is currently the ** same as the snapshot number. Since the exact origin of the exit cannot ** be determined, all guards for the same snapshot must exit with the same ** RegSP mapping. ** A renamed ref which has been used in a prior guard for the same snapshot ** would cause an inconsistency. The easy way out is to force a spill slot. */ static int asm_snap_checkrename(ASMState *as, IRRef ren) { SnapShot *snap = &as->T->snap[as->snapno]; SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { IRRef ref = snap_ref(map[n]); if (ref == ren) { IRIns *ir = IR(ref); ra_spill(as, ir); /* Register renamed, so force a spill slot. */ RA_DBGX((as, "snaprensp $f $s", ref, ir->s)); return 1; /* Found. */ } } return 0; /* Not found. */ } /* Prepare snapshot for next guard instruction. */ static void asm_snap_prep(ASMState *as) { if (as->curins < as->snapref) { do { lua_assert(as->snapno != 0); as->snapno--; as->snapref = as->T->snap[as->snapno].ref; } while (as->curins < as->snapref); asm_snap_alloc(as); as->snaprename = as->T->nins; } else { /* Process any renames above the highwater mark. */ for (; as->snaprename < as->T->nins; as->snaprename++) { IRIns *ir = IR(as->snaprename); if (asm_snap_checkrename(as, ir->op1)) ir->op2 = REF_BIAS-1; /* Kill rename. */ } } } /* Emit conditional branch to exit for guard. ** It's important to emit this *after* all registers have been allocated, ** because rematerializations may invalidate the flags. */ static void asm_guardcc(ASMState *as, int cc) { MCode *target = exitstub_addr(as->J, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *(int32_t *)(p+1) = jmprel(p+5, target); target = p; cc ^= 1; if (as->realign) { emit_sjcc(as, cc, target); return; } } emit_jcc(as, cc, target); } /* -- Memory operand fusion ----------------------------------------------- */ /* Arch-specific field offsets. */ static const uint8_t field_ofs[IRFL__MAX+1] = { #define FLOFS(name, ofs) (uint8_t)(ofs), IRFLDEF(FLOFS) #undef FLOFS 0 }; /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if a reference is a signed 32 bit constant. */ static int asm_isk32(ASMState *as, IRRef ref, int32_t *k) { if (irref_isk(ref)) { IRIns *ir = IR(ref); if (ir->o != IR_KINT64) { *k = ir->i; return 1; } else if (checki32((int64_t)ir_kint64(ir)->u64)) { *k = (int32_t)ir_kint64(ir)->u64; return 1; } } return 0; } /* Check if there's no conflicting instruction between curins and ref. ** Also avoid fusing loads if there are multiple references. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) { if (ir[i].o == conflict) return 0; /* Conflict found. */ else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref)) return 0; } return 1; /* Ok, no conflict. */ } /* Fuse array base into memory operand. */ static IRRef asm_fuseabase(ASMState *as, IRRef ref) { IRIns *irb = IR(ref); as->mrm.ofs = 0; if (irb->o == IR_FLOAD) { IRIns *ira = IR(irb->op1); lua_assert(irb->op2 == IRFL_TAB_ARRAY); /* We can avoid the FLOAD of t->array for colocated arrays. */ if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE && noconflict(as, irb->op1, IR_NEWREF, 1)) { as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */ return irb->op1; /* Table obj. */ } } else if (irb->o == IR_ADD && irref_isk(irb->op2)) { /* Fuse base offset (vararg load). */ as->mrm.ofs = IR(irb->op2)->i; return irb->op1; } return ref; /* Otherwise use the given array base. */ } /* Fuse array reference into memory operand. */ static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irx; lua_assert(ir->o == IR_AREF); as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow); irx = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += 8*irx->i; as->mrm.idx = RID_NONE; } else { rset_clear(allow, as->mrm.base); as->mrm.scale = XM_SCALE8; /* Fuse a constant ADD (e.g. t[i+1]) into the offset. ** Doesn't help much without ABCelim, but reduces register pressure. */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && ra_noreg(irx->r) && irx->o == IR_ADD && irref_isk(irx->op2)) { as->mrm.ofs += 8*IR(irx->op2)->i; as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow); } else { as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow); } } } /* Fuse array/hash/upvalue reference into memory operand. ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to ** pass the final allow mask, excluding any GPRs used for other inputs. ** In particular: 2-operand GPR instructions need to call ra_dest() first! */ static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { switch ((IROp)ir->o) { case IR_AREF: if (mayfuse(as, ref)) { asm_fusearef(as, ir, allow); return; } break; case IR_HREFK: if (mayfuse(as, ref)) { as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); as->mrm.idx = RID_NONE; return; } break; case IR_UREFC: if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv; as->mrm.ofs = ptr2addr(&uv->tv); as->mrm.base = as->mrm.idx = RID_NONE; return; } break; default: lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO); break; } } as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); as->mrm.ofs = 0; as->mrm.idx = RID_NONE; } /* Fuse FLOAD/FREF reference into memory operand. */ static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow) { lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF); as->mrm.ofs = field_ofs[ir->op2]; as->mrm.idx = RID_NONE; if (irref_isk(ir->op1)) { as->mrm.ofs += IR(ir->op1)->i; as->mrm.base = RID_NONE; } else { as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); } } /* Fuse string reference into memory operand. */ static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irr; lua_assert(ir->o == IR_STRREF); as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = sizeof(GCstr); if (irref_isk(ir->op1)) { as->mrm.ofs += IR(ir->op1)->i; } else { Reg r = ra_alloc1(as, ir->op1, allow); rset_clear(allow, r); as->mrm.base = (uint8_t)r; } irr = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += irr->i; } else { Reg r; /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) { as->mrm.ofs += IR(irr->op2)->i; r = ra_alloc1(as, irr->op1, allow); } else { r = ra_alloc1(as, ir->op2, allow); } if (as->mrm.base == RID_NONE) as->mrm.base = (uint8_t)r; else as->mrm.idx = (uint8_t)r; } } static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); as->mrm.idx = RID_NONE; if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { as->mrm.ofs = ir->i; as->mrm.base = RID_NONE; } else if (ir->o == IR_STRREF) { asm_fusestrref(as, ir, allow); } else { as->mrm.ofs = 0; if (mayfuse(as, ref) && ir->o == IR_ADD && ra_noreg(ir->r)) { /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */ IRIns *irx; IRRef idx; Reg r; if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */ ref = ir->op1; ir = IR(ref); if (!(ir->o == IR_ADD && mayfuse(as, ref) && ra_noreg(ir->r))) goto noadd; } as->mrm.scale = XM_SCALE1; idx = ir->op1; ref = ir->op2; irx = IR(idx); if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */ idx = ir->op2; ref = ir->op1; irx = IR(idx); } if (mayfuse(as, idx) && ra_noreg(irx->r)) { if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) { /* Recognize idx<op1; as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6); } else if (irx->o == IR_ADD && irx->op1 == irx->op2) { /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */ idx = irx->op1; as->mrm.scale = XM_SCALE2; } } r = ra_alloc1(as, idx, allow); rset_clear(allow, r); as->mrm.idx = (uint8_t)r; } noadd: as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); } } /* Fuse load into memory operand. */ static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { if (allow != RSET_EMPTY) { /* Fast path. */ ra_noweak(as, ir->r); return ir->r; } fusespill: /* Force a spill if only memory operands are allowed (asm_x87load). */ as->mrm.base = RID_ESP; as->mrm.ofs = ra_spill(as, ir); as->mrm.idx = RID_NONE; return RID_MRM; } if (ir->o == IR_KNUM) { RegSet avail = as->freeset & ~as->modset & RSET_FPR; lua_assert(allow != RSET_EMPTY); if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */ as->mrm.ofs = ptr2addr(ir_knum(ir)); as->mrm.base = as->mrm.idx = RID_NONE; return RID_MRM; } } else if (mayfuse(as, ref)) { RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR; if (ir->o == IR_SLOAD) { if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) && noconflict(as, ref, IR_RETF, 0)) { as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow); as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0); as->mrm.idx = RID_NONE; return RID_MRM; } } else if (ir->o == IR_FLOAD) { /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */ if ((irt_isint(ir->t) || irt_isaddr(ir->t)) && noconflict(as, ref, IR_FSTORE, 0)) { asm_fusefref(as, ir, xallow); return RID_MRM; } } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) { if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_XLOAD) { /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp). ** Fusing unaligned memory operands is ok on x86 (except for SIMD types). */ if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) && noconflict(as, ref, IR_XSTORE, 0)) { asm_fusexref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_VLOAD) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } if (!(as->freeset & allow) && (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref))) goto fusespill; return ra_allocref(as, ref, allow); } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_NARGS(ci); int32_t ofs = STACKARG_OFS; uint32_t gprs = REGARG_GPRS; #if LJ_64 Reg fpr = REGARG_FIRSTFPR; #endif lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */ if ((void *)ci->func) emit_call(as, ci->func); for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); Reg r; #if LJ_64 && LJ_ABI_WIN /* Windows/x64 argument registers are strictly positional. */ r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31); fpr++; gprs >>= 5; #elif LJ_64 /* POSIX/x64 argument registers are used in order of appearance. */ if (irt_isfp(ir->t)) { r = fpr <= REGARG_LASTFPR ? fpr : 0; fpr++; } else { r = gprs & 31; gprs >>= 5; } #else if (irt_isfp(ir->t) || !(ci->flags & CCI_FASTCALL)) { r = 0; } else { r = gprs & 31; gprs >>= 5; } #endif if (r) { /* Argument is in a register. */ if (r < RID_MAX_GPR && ref < ASMREF_TMP1) { #if LJ_64 if (ir->o == IR_KINT64) emit_loadu64(as, r, ir_kint64(ir)->u64); else #endif emit_loadi(as, r, ir->i); } else { lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */ if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); ra_movrr(as, ir, r, ir->r); } else { ra_allocref(as, ref, RID2RSET(r)); } } } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */ lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */ if (LJ_32 && (ofs & 4) && irref_isk(ref)) { /* Split stores for unaligned FP consts. */ emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo); emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi); } else { r = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs); } ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8; } else { /* Non-FP argument is on stack. */ if (LJ_32 && ref < ASMREF_TMP1) { emit_movmroi(as, RID_ESP, ofs, ir->i); } else { r = ra_alloc1(as, ref, RSET_GPR); emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs); } ofs += sizeof(intptr_t); } } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { if (irt_isfp(ir->t)) { int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ #if LJ_64 if ((ci->flags & CCI_CASTU64)) { Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */ } else { emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs); } } else { ra_destreg(as, ir, RID_FPRET); } #else /* Number result is in x87 st0 for x86 calling convention. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, dest, RID_ESP, ofs); } if ((ci->flags & CCI_CASTU64)) { emit_movtomro(as, RID_RET, RID_ESP, ofs); emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4); } else { emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); } #endif } else { lua_assert(!irt_ispri(ir->t)); ra_destreg(as, ir, RID_RET); } } } /* Collect arguments from CALL* and CARG instructions. */ static void asm_collectargs(ASMState *as, IRIns *ir, const CCallInfo *ci, IRRef *args) { uint32_t n = CCI_NARGS(ci); lua_assert(n <= CCI_NARGS_MAX); if ((ci->flags & CCI_L)) { *args++ = ASMREF_L; n--; } while (n-- > 1) { ir = IR(ir->op1); lua_assert(ir->o == IR_CARG); args[n] = ir->op2; } args[0] = ir->op1; lua_assert(IR(ir->op1)->o != IR_CARG); } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } /* Reconstruct CCallInfo flags for CALLX*. */ static uint32_t asm_callx_flags(ASMState *as, IRIns *ir) { uint32_t nargs = 0; if (ir->op1 != REF_NIL) { /* Count number of arguments first. */ IRIns *ira = IR(ir->op1); nargs++; while (ira->o == IR_CARG) { nargs++; ira = IR(ira->op1); } } /* NYI: fastcall etc. */ return (nargs | (ir->t.irt << CCI_OTSHIFT)); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; CCallInfo ci; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); irf = IR(ir->op2); if (LJ_32 && irref_isk(ir->op2)) { /* Call to constant address on x86. */ ci.func = (ASMFunction)(void *)(uintptr_t)(uint32_t)irf->i; } else { /* Prefer a non-argument register or RID_RET for indirect calls. */ RegSet allow = (RSET_GPR & ~RSET_SCRATCH)|RID2RSET(RID_RET); Reg r = ra_alloc1(as, ir->op2, allow); emit_rr(as, XO_GROUP5, XOg_CALL, r); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc)); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_P); asm_guardcc(as, CC_NE); emit_rr(as, XO_UCOMISD, left, tmp); emit_rr(as, XO_CVTSI2SD, tmp, dest); if (!(as->flags & JIT_F_SPLIT_XMM)) emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */ emit_rr(as, XO_CVTTSD2SI, dest, left); /* Can't fuse since left is needed twice. */ } static void asm_tobit(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp = ra_noreg(IR(ir->op1)->r) ? ra_alloc1(as, ir->op1, RSET_FPR) : ra_scratch(as, RSET_FPR); Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp)); emit_rr(as, XO_MOVDto, tmp, dest); emit_mrm(as, XO_ADDSD, tmp, right); ra_left(as, tmp, ir->op1); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64)); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ Reg left = asm_fuseload(as, lref, RSET_FPR); emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left); if (left == dest) return; /* Avoid the XO_XORPS. */ } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */ /* number = (2^52+2^51 .. u32) - (2^52+2^51) */ cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000)); Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_rr(as, XO_CVTSD2SS, dest, dest); emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */ emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */ emit_loadn(as, bias, k); emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR)); return; } else { /* Integer to FP conversion. */ Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ? ra_alloc1(as, lref, RSET_GPR) : asm_fuseload(as, lref, RSET_GPR); if (LJ_64 && st == IRT_U64) { MCLabel l_end = emit_label(as); const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000)); emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */ emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */ } emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS, dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left); } if (!(as->flags & JIT_F_SPLIT_XMM)) emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */ } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); x86Op op = st == IRT_NUM ? ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) : ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI); if (LJ_32 && irt_isu32(ir->t)) { /* FP to U32 conversion on x86. */ /* u32 = (int32_t)(number - 2^31) + 2^31 */ Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) : ra_scratch(as, RSET_FPR); emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000); emit_rr(as, op, dest, tmp); if (st == IRT_NUM) emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J, U64x(c1e00000,00000000))); else emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J, U64x(00000000,cf000000))); ra_left(as, tmp, lref); } else if (LJ_64 && irt_isu64(ir->t)) { /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */ Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) : ra_scratch(as, RSET_FPR); MCLabel l_end = emit_label(as); emit_rr(as, op, dest|REX_64, tmp); if (st == IRT_NUM) emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J, U64x(c3f00000,00000000))); else emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J, U64x(00000000,df800000))); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest < 2^63. */ emit_rr(as, op, dest|REX_64, tmp); ra_left(as, tmp, lref); } else { Reg left = asm_fuseload(as, lref, RSET_FPR); if (LJ_64 && irt_isu32(ir->t)) emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */ emit_mrm(as, op, dest|((LJ_64 && (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0), left); } } } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left, dest = ra_dest(as, ir, RSET_GPR); RegSet allow = RSET_GPR; x86Op op; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if (st == IRT_I8) { op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_U8) { op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_I16) { op = XO_MOVSXw; } else { op = XO_MOVZXw; } left = asm_fuseload(as, lref, allow); /* Add extra MOV if source is already in wrong register. */ if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) { Reg tmp = ra_scratch(as, allow); emit_rr(as, op, dest, tmp); emit_rr(as, XO_MOV, tmp, left); } else { emit_mrm(as, op, dest, left); } } else { /* 32/64 bit integer conversions. */ if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */ Reg dest = ra_dest(as, ir, RSET_GPR); ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else if (irt_is64(ir->t)) { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64 || !(ir->op2 & IRCONV_SEXT)) { /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* 32 to 64 bit sign extension. */ Reg left = asm_fuseload(as, lref, RSET_GPR); emit_mrm(as, XO_MOVSXd, dest|REX_64, left); } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64) { Reg left = asm_fuseload(as, lref, RSET_GPR); /* This is either a 32 bit reg/reg mov which zeroes the hiword ** or a load of the loword from a 64 bit address. */ emit_mrm(as, XO_MOV, dest, left); } else { /* 32/32 bit no-op (cast). */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } } #if LJ_32 && LJ_HASFFI /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */ /* 64 bit integer to FP conversion in 32 bit mode. */ static void asm_conv_fp_int64(ASMState *as, IRIns *ir) { Reg hi = ra_alloc1(as, ir->op1, RSET_GPR); Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi)); int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, dest, RID_ESP, ofs); } emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) { /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */ MCLabel l_end = emit_label(as); emit_rma(as, XO_FADDq, XOg_FADDq, lj_ir_k64_find(as->J, U64x(43f00000,00000000))); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */ } else { lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64); } emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0); /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */ emit_rmro(as, XO_MOVto, hi, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 0); } /* FP to 64 bit integer conversion in 32 bit mode. */ static void asm_conv_int64_fp(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); Reg lo, hi; lua_assert(st == IRT_NUM || st == IRT_FLOAT); lua_assert(dt == IRT_I64 || dt == IRT_U64); lua_assert(((ir-1)->op2 & IRCONV_TRUNC)); hi = ra_dest(as, ir, RSET_GPR); lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi)); if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0); /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */ if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */ emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 4); emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff); } if (dt == IRT_U64) { /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */ MCLabel l_pop, l_end = emit_label(as); emit_x87op(as, XI_FPOP); l_pop = emit_label(as); emit_sjmp(as, l_end); emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); else emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rma(as, XO_FADDq, XOg_FADDq, lj_ir_k64_find(as->J, U64x(c3f00000,00000000))); emit_sjcc(as, CC_NS, l_pop); emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */ } emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */ emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); } else { /* Otherwise set FPU rounding mode to truncate before the store. */ emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0); emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0); emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0); emit_loadi(as, lo, 0xc00); emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0); } if (dt == IRT_U64) emit_x87op(as, XI_FDUP); emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd, st == IRT_NUM ? XOg_FLDq: XOg_FLDd, asm_fuseload(as, ir->op1, RSET_EMPTY)); } #endif static void asm_strto(ASMState *as, IRIns *ir) { /* Force a spill slot for the destination register (if any). */ const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_tonum]; IRRef args[2]; RegSet drop = RSET_SCRATCH; if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r)) rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */ ra_evictset(as, drop); asm_guardcc(as, CC_E); emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64, RID_ESP, sps_scale(ir->s)); } static void asm_tostr(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (irt_isnum(irl->t)) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum]; args[1] = ASMREF_TMP1; /* const lua_Number * */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64, RID_ESP, ra_spill(as, irl)); } else { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint]; args[1] = ir->op1; /* int32_t k */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } } /* -- Memory references --------------------------------------------------- */ static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusearef(as, ir, RSET_GPR); if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0)) emit_mrm(as, XO_LEA, dest, RID_MRM); else if (as->mrm.base != dest) emit_rr(as, XO_MOV, dest, as->mrm.base); } /* Must match with hash*() in lj_tab.c. */ static uint32_t ir_khash(IRIns *ir) { uint32_t lo, hi; if (irt_isstr(ir->t)) { return ir_kstr(ir)->hash; } else if (irt_isnum(ir->t)) { lo = ir_knum(ir)->u32.lo; hi = ir_knum(ir)->u32.hi << 1; } else if (irt_ispri(ir->t)) { lua_assert(!irt_isnil(ir->t)); return irt_type(ir->t)-IRT_FALSE; } else { lua_assert(irt_isgcv(ir->t)); lo = u32ptr(ir_kgc(ir)); hi = lo + HASH_BIAS; } return hashrot(lo, hi); } /* Merge NE(HREF, niltv) check. */ static MCode *merge_href_niltv(ASMState *as, IRIns *ir) { /* Assumes nothing else generates NE of HREF. */ if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins && ra_hasreg(ir->r)) { MCode *p = as->mcp; p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6; /* Ensure no loop branch inversion happened. */ if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) { as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */ return p + *(int32_t *)(p-4); /* Return exit address. */ } } return NULL; } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir) { MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */ RegSet allow = RSET_GPR; Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, tmp = RID_NONE; IRIns *irkey = IR(ir->op2); int isk = irref_isk(ir->op2); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; if (!isk) { rset_clear(allow, tab); key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow); if (!irt_isstr(kt)) tmp = ra_scratch(as, rset_exclude(allow, key)); } /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */ l_end = emit_label(as); if (nilexit && ir[1].o == IR_NE) { emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */ nilexit = NULL; } else { emit_loada(as, dest, niltvg(J2G(as->J))); } /* Follow hash chain until the end. */ l_loop = emit_sjcc_label(as, CC_NZ); emit_rr(as, XO_TEST, dest, dest); emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (nilexit) emit_jcc(as, CC_E, nilexit); else emit_sjcc(as, CC_E, l_end); if (irt_isnum(kt)) { if (isk) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_next); emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { emit_sjcc(as, CC_P, l_next); emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n)); emit_sjcc(as, CC_A, l_next); /* The type check avoids NaN penalties and complaints from Valgrind. */ #if LJ_64 emit_u32(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it)); #else emit_i8(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); #endif } #if LJ_64 } else if (irt_islightud(kt)) { emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64)); #endif } else { if (!irt_ispri(kt)) { lua_assert(irt_isaddr(kt)); if (isk) emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); else emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr)); emit_sjcc(as, CC_NE, l_next); } lua_assert(!irt_isnil(kt)); emit_i8(as, irt_toitype(kt)); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); } emit_sfixup(as, l_loop); checkmclim(as); /* Load main position relative to tab->node into dest. */ khash = isk ? ir_khash(irkey) : 1; if (khash == 0) { emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node)); } else { emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node)); if ((as->flags & JIT_F_PREFER_IMUL)) { emit_i8(as, sizeof(Node)); emit_rr(as, XO_IMULi8, dest, dest); } else { emit_shifti(as, XOg_SHL, dest, 3); emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0); } if (isk) { emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else if (irt_isstr(kt)) { emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash)); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else { /* Must match with hashrot() in lj_tab.c. */ emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask)); emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp); emit_shifti(as, XOg_ROL, tmp, HASH_ROT3); emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp); emit_shifti(as, XOg_ROL, dest, HASH_ROT2); emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest); emit_shifti(as, XOg_ROL, dest, HASH_ROT1); emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest); if (irt_isnum(kt)) { emit_rr(as, XO_ARITH(XOg_ADD), dest, dest); #if LJ_64 emit_shifti(as, XOg_SHR|REX_64, dest, 32); emit_rr(as, XO_MOV, tmp, dest); emit_rr(as, XO_MOVDto, key|REX_64, dest); #else emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4); emit_rr(as, XO_MOVDto, key, tmp); #endif } else { emit_rr(as, XO_MOV, tmp, key); emit_rmro(as, XO_LEA, dest, key, HASH_BIAS); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); #if !LJ_64 MCLabel l_exit; #endif lua_assert(ofs % sizeof(Node) == 0); if (ra_hasreg(dest)) { if (ofs != 0) { if (dest == node && !(as->flags & JIT_F_LEA_AGU)) emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs); else emit_rmro(as, XO_LEA, dest, node, ofs); } else if (dest != node) { emit_rr(as, XO_MOV, dest, node); } } asm_guardcc(as, CC_NE); #if LJ_64 if (!irt_ispri(irkey->t)) { Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node)); emit_rmro(as, XO_CMP, key|REX_64, node, ofs + (int32_t)offsetof(Node, key.u64)); lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t)); /* Assumes -0.0 is already canonicalized to +0.0. */ emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 : ((uint64_t)irt_toitype(irkey->t) << 32) | (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey))); } else { lua_assert(!irt_isnil(irkey->t)); emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); } #else l_exit = emit_label(as); if (irt_isnum(irkey->t)) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_exit); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { if (!irt_ispri(irkey->t)) { lua_assert(irt_isgcv(irkey->t)); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); emit_sjcc(as, CC_NE, l_exit); } lua_assert(!irt_isnil(irkey->t)); emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); } #endif } static void asm_newref(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; IRIns *irkey; Reg tmp; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); irkey = IR(ir->op2); if (irt_isnum(irkey->t)) { /* For numbers use the constant itself or a spill slot as a TValue. */ if (irref_isk(ir->op2)) emit_loada(as, tmp, ir_knum(irkey)); else emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey)); } else { /* Otherwise use g->tmptv to hold the TValue. */ if (!irref_isk(ir->op2)) { Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp)); emit_movtomro(as, REX_64IR(irkey, src), tmp, 0); } else if (!irt_ispri(irkey->t)) { emit_movmroi(as, tmp, 0, irkey->i); } if (!(LJ_64 && irt_islightud(irkey->t))) emit_movmroi(as, tmp, 4, irt_toitype(irkey->t)); emit_loada(as, tmp, &J2G(as->J)->tmptv); } } static void asm_uref(ASMState *as, IRIns *ir) { /* NYI: Check that UREFO is still open and not aliasing a slot. */ Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_rma(as, XO_MOV, dest, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv)); asm_guardcc(as, CC_NE); emit_i8(as, 1); emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed)); } else { emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v)); } emit_rmro(as, XO_MOV, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusefref(as, ir, RSET_GPR); emit_mrm(as, XO_LEA, dest, RID_MRM); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusestrref(as, ir, RSET_GPR); if (as->mrm.base == RID_NONE) emit_loadi(as, dest, as->mrm.ofs); else if (as->mrm.base == dest && as->mrm.idx == RID_NONE) emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs); else emit_mrm(as, XO_LEA, dest, RID_MRM); } /* -- Loads and stores ---------------------------------------------------- */ static void asm_fxload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR); x86Op xo; if (ir->o == IR_FLOAD) asm_fusefref(as, ir, RSET_GPR); else asm_fusexref(as, ir->op1, RSET_GPR); /* ir->op2 is ignored -- unaligned loads are ok on x86. */ switch (irt_type(ir->t)) { case IRT_I8: xo = XO_MOVSXb; break; case IRT_U8: xo = XO_MOVZXb; break; case IRT_I16: xo = XO_MOVSXw; break; case IRT_U16: xo = XO_MOVZXw; break; case IRT_NUM: xo = XMM_MOVRM(as); break; case IRT_FLOAT: xo = XO_MOVSS; break; default: if (LJ_64 && irt_is64(ir->t)) dest |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOV; break; } emit_mrm(as, xo, dest, RID_MRM); } static void asm_fxstore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg src = RID_NONE, osrc = RID_NONE; int32_t k = 0; /* The IRT_I16/IRT_U16 stores should never be simplified for constant ** values since mov word [mem], imm16 has a length-changing prefix. */ if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) || !asm_isk32(as, ir->op2, &k)) { RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR : (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR; src = osrc = ra_alloc1(as, ir->op2, allow8); if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */ rset_clear(allow, osrc); src = ra_scratch(as, allow8); } rset_clear(allow, src); } if (ir->o == IR_FSTORE) asm_fusefref(as, IR(ir->op1), allow); else asm_fusexref(as, ir->op1, allow); /* ir->op2 is ignored -- unaligned stores are ok on x86. */ if (ra_hasreg(src)) { x86Op xo; switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break; case IRT_I16: case IRT_U16: xo = XO_MOVtow; break; case IRT_NUM: xo = XO_MOVSDto; break; case IRT_FLOAT: xo = XO_MOVSSto; break; #if LJ_64 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */ #endif default: if (LJ_64 && irt_is64(ir->t)) src |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOVto; break; } emit_mrm(as, xo, src, RID_MRM); if (!LJ_64 && src != osrc) { ra_noweak(as, osrc); emit_rr(as, XO_MOV, src, osrc); } } else { if (irt_isi8(ir->t) || irt_isu8(ir->t)) { emit_i8(as, k); emit_mrm(as, XO_MOVmib, 0, RID_MRM); } else { lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); emit_i32(as, k); emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM); } } } #if LJ_64 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck) { if (ra_used(ir) || typecheck) { Reg dest = ra_dest(as, ir, RSET_GPR); if (typecheck) { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest)); asm_guardcc(as, CC_NE); emit_i8(as, -2); emit_rr(as, XO_ARITHi8, XOg_CMP, tmp); emit_shifti(as, XOg_SAR|REX_64, tmp, 47); emit_rr(as, XO_MOV, tmp|REX_64, dest); } return dest; } else { return RID_NONE; } } #endif static void asm_ahuvload(ASMState *as, IRIns *ir) { lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t)); #if LJ_64 if (irt_islightud(ir->t)) { Reg dest = asm_load_lightud64(as, ir, 1); if (ra_hasreg(dest)) { asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM); } return; } else #endif if (ra_used(ir)) { RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM); } else { asm_fuseahuref(as, ir->op1, RSET_GPR); } /* Always do the type check, even if the load result is unused. */ as->mrm.ofs += 4; asm_guardcc(as, irt_isnum(ir->t) ? CC_A : CC_NE); if (LJ_64 && irt_isnum(ir->t)) { emit_u32(as, LJ_TISNUM); emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM); } else { emit_i8(as, irt_toitype(ir->t)); emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM); } } static void asm_ahustore(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_FPR); asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOVSDto, src, RID_MRM); #if LJ_64 } else if (irt_islightud(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src)); emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM); #endif } else { IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg src = RID_NONE; if (!irref_isk(ir->op2)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } asm_fuseahuref(as, ir->op1, allow); if (ra_hasreg(src)) { emit_mrm(as, XO_MOVto, src, RID_MRM); } else if (!irt_ispri(irr->t)) { lua_assert(irt_isaddr(ir->t)); emit_i32(as, irr->i); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } as->mrm.ofs += 4; emit_i32(as, (int32_t)irt_toitype(ir->t)); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); IRType1 t = ir->t; Reg base; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t)) { Reg left = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XMM_MOVRM(as), left, base, ofs); t.irt = IRT_NUM; /* Continue with a regular number type check. */ #if LJ_64 } else if (irt_islightud(t)) { Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK)); if (ra_hasreg(dest)) { base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XO_MOV, dest|REX_64, base, ofs); } return; #endif } else if (ra_used(ir)) { RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); base = ra_alloc1(as, REF_BASE, RSET_GPR); lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); if ((ir->op2 & IRSLOAD_CONVERT)) emit_rmro(as, XO_CVTSD2SI, dest, base, ofs); else if (irt_isnum(t)) emit_rmro(as, XMM_MOVRM(as), dest, base, ofs); else emit_rmro(as, XO_MOV, dest, base, ofs); } else { if (!(ir->op2 & IRSLOAD_TYPECHECK)) return; /* No type check: avoid base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); } if ((ir->op2 & IRSLOAD_TYPECHECK)) { /* Need type check, even if the load result is unused. */ asm_guardcc(as, irt_isnum(t) ? CC_A : CC_NE); if (LJ_64 && irt_isnum(t)) { emit_u32(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4); } else { emit_i8(as, irt_toitype(t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4); } } } /* -- Allocations --------------------------------------------------------- */ static void asm_snew(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new]; IRRef args[3]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* const char *str */ args[2] = ir->op2; /* size_t len */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } static void asm_tnew(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_new1]; IRRef args[2]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* uint32_t ahsize */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCtab * */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1 | (ir->op2 << 24)); } static void asm_tdup(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_dup]; IRRef args[2]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* const GCtab *kt */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCtab * */ asm_gencall(as, ci, args); } #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID typeid = (CTypeID)IR(ir->op1)->i; CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ? lj_ctype_size(cts, typeid) : (CTSize)IR(ir->op2)->i; const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[2]; lua_assert(sz != CTSIZE_INVALID); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { RegSet allow = (RSET_GPR & ~RSET_SCRATCH); #if LJ_64 Reg r64 = sz == 8 ? REX_64 : 0; if (irref_isk(ir->op2)) { IRIns *irk = IR(ir->op2); uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 : (uint64_t)(uint32_t)irk->i; if (sz == 4 || checki32((int64_t)k)) { emit_i32(as, (int32_t)k); emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata)); } else { emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata)); emit_loadu64(as, RID_ECX, k); } } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata)); } #else int32_t ofs = sizeof(GCcdata); if (LJ_HASFFI && sz == 8) { ofs += 4; ir++; lua_assert(ir->o == IR_HIOP); } do { if (irref_isk(ir->op2)) { emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i); } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r, RID_RET, ofs); rset_clear(allow, r); } if (!LJ_HASFFI || ofs == sizeof(GCcdata)) break; ofs -= 4; ir--; } while (1); #endif lua_assert(sz == 4 || (sz == 8 && (LJ_64 || LJ_HASFFI))); } /* Combine initialization of marked, gct and typeid. */ emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked)); emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX, (int32_t)((~LJ_TCDATA<<8)+(typeid<<16))); emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES); emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite); asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata))); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab)); MCLabel l_end = emit_label(as); emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist)); emit_setgl(as, tab, gc.grayagain); emit_getgl(as, tmp, gc.grayagain); emit_i8(as, ~LJ_GC_BLACK); emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked)); emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J)); obj = IR(ir->op1)->r; emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_WHITES); if (irref_isk(ir->op2)) { GCobj *vp = ir_kgc(IR(ir->op2)); emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked); } else { Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj)); emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked)); } emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); } /* -- FP/int arithmetic and logic operations ------------------------------ */ /* Load reference onto x87 stack. Force a spill to memory if needed. */ static void asm_x87load(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_KNUM) { cTValue *tv = ir_knum(ir); if (tvispzero(tv)) /* Use fldz only for +0. */ emit_x87op(as, XI_FLDZ); else if (tvispone(tv)) emit_x87op(as, XI_FLD1); else emit_rma(as, XO_FLDq, XOg_FLDq, tv); } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) && !irref_isk(ir->op1) && mayfuse(as, ir->op1)) { IRIns *iri = IR(ir->op1); emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri)); } else { emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY)); } } /* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */ static int fpmjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX); IRIns *irx; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, lj_vm_pow_sse); irx = IR(irpp->op1); if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1) irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */ ra_left(as, RID_XMM0, irpp->op1); ra_left(as, RID_XMM1, irp->op2); return 1; } } return 0; } static void asm_fpmath(ASMState *as, IRIns *ir) { IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER; if (fpm == IRFPM_SQRT) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); emit_mrm(as, XO_SQRTSD, dest, left); } else if (fpm <= IRFPM_TRUNC) { if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */ Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op. ** Let's pretend it's a 3-byte opcode, and compensate afterwards. ** This is atrocious, but the alternatives are much worse. */ /* Round down/up/trunc == 1001/1010/1011. */ emit_i8(as, 0x09 + fpm); emit_mrm(as, XO_ROUNDSD, dest, left); if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) { as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */ } *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */ } else { /* Call helper functions for SSE2 variant. */ /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse : fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse); ra_left(as, RID_XMM0, ir->op1); } } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) { /* Rejoined to pow(). */ } else { /* Handle x87 ops. */ int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs); } emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs); switch (fpm) { /* st0 = lj_vm_*(st0) */ case IRFPM_EXP: emit_call(as, lj_vm_exp); break; case IRFPM_EXP2: emit_call(as, lj_vm_exp2); break; case IRFPM_SIN: emit_x87op(as, XI_FSIN); break; case IRFPM_COS: emit_x87op(as, XI_FCOS); break; case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break; case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10: /* Note: the use of fyl2xp1 would be pointless here. When computing ** log(1.0+eps) the precision is already lost after 1.0 is added. ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense. */ emit_x87op(as, XI_FYL2X); break; case IRFPM_OTHER: switch (ir->o) { case IR_ATAN2: emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break; case IR_LDEXP: emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break; default: lua_assert(0); break; } break; default: lua_assert(0); break; } asm_x87load(as, ir->op1); switch (fpm) { case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break; case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break; case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break; case IRFPM_OTHER: if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2); break; default: break; } } } static void asm_fppowi(ASMState *as, IRIns *ir) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, lj_vm_powi_sse); ra_left(as, RID_XMM0, ir->op1); ra_left(as, RID_EAX, ir->op2); } #if LJ_64 && LJ_HASFFI static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #endif /* Find out whether swapping operands might be beneficial. */ static int swapops(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); lua_assert(ra_noreg(irr->r)); if (!irm_iscomm(lj_ir_mode[ir->o])) return 0; /* Can't swap non-commutative operations. */ if (irref_isk(ir->op2)) return 0; /* Don't swap constants to the left. */ if (ra_hasreg(irl->r)) return 1; /* Swap if left already has a register. */ if (ra_samehint(ir->r, irr->r)) return 1; /* Swap if dest and right have matching hints. */ if (as->curins > as->loopref) { /* In variant part? */ if (ir->op2 < as->loopref && !irt_isphi(irr->t)) return 0; /* Keep invariants on the right. */ if (ir->op1 < as->loopref && !irt_isphi(irl->t)) return 1; /* Swap invariants to the right. */ } if (opisfusableload(irl->o)) return 1; /* Swap fusable loads to the right. */ return 0; /* Otherwise don't swap. */ } static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_FPR; Reg dest; Reg right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right)) { if (swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseload(as, rref, rset_clear(allow, dest)); } emit_mrm(as, xo, dest, right); ra_left(as, dest, lref); } static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_GPR; Reg dest, right; int32_t k = 0; if (as->testmcp == as->mcp) { /* Drop test r,r instruction. */ as->testmcp = NULL; as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2; } right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) { if (swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseload(as, rref, rset_clear(allow, dest)); } if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */ asm_guardcc(as, CC_O); if (xa != XOg_X_IMUL) { if (ra_hasreg(right)) emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right); else emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k); } else if (ra_hasreg(right)) { /* IMUL r, mrm. */ emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right); } else { /* IMUL r, r, k. */ /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */ Reg left = asm_fuseload(as, lref, RSET_GPR); x86Op xo; if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8; } else { emit_i32(as, k); xo = XO_IMULi; } emit_rr(as, xo, REX_64IR(ir, dest), left); return; } ra_left(as, dest, lref); } /* LEA is really a 4-operand ADD with an independent destination register, ** up to two source registers and an immediate. One register can be scaled ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several ** instructions. ** ** Currently only a few common cases are supported: ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b ** - Right ADD fusion: y = a+(b+k) ** The ommited variants have already been reduced by FOLD. ** ** There are more fusion opportunities, like gathering shifts or joining ** common references. But these are probably not worth the trouble, since ** array indexing is not decomposed and already makes use of all fields ** of the ModRM operand. */ static int asm_lea(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg dest; as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = 0; if (ra_hasreg(irl->r)) { rset_clear(allow, irl->r); ra_noweak(as, irl->r); as->mrm.base = irl->r; if (irref_isk(ir->op2) || ra_hasreg(irr->r)) { /* The PHI renaming logic does a better job in some cases. */ if (ra_hasreg(ir->r) && ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) || (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2))) return 0; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; } else { rset_clear(allow, irr->r); ra_noweak(as, irr->r); as->mrm.idx = irr->r; } } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) && irref_isk(irr->op2)) { Reg idx = ra_alloc1(as, irr->op1, allow); rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; as->mrm.ofs = IR(irr->op2)->i; } else { return 0; } } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) && (irref_isk(ir->op2) || irref_isk(irl->op2))) { Reg idx, base = ra_alloc1(as, irl->op1, allow); rset_clear(allow, base); as->mrm.base = (uint8_t)base; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; idx = ra_alloc1(as, irl->op2, allow); } else { as->mrm.ofs = IR(irl->op2)->i; idx = ra_alloc1(as, ir->op2, allow); } rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; } else { return 0; } dest = ra_dest(as, ir, allow); emit_mrm(as, XO_LEA, dest, RID_MRM); return 1; /* Success. */ } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_ADDSD); else if ((as->flags & JIT_F_LEA_AGU) || as->testmcp == as->mcp || irt_is64(ir->t) || !asm_lea(as, ir)) asm_intarith(as, ir, XOg_ADD); } static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg) { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest); ra_left(as, dest, ir->op1); } static void asm_bitswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24), REX_64IR(ir, dest), 0, 0, as->mcp, 1); ra_left(as, dest, ir->op1); } static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs) { IRRef rref = ir->op2; IRIns *irr = IR(rref); Reg dest; if (irref_isk(rref)) { /* Constant shifts. */ int shift; dest = ra_dest(as, ir, RSET_GPR); shift = irr->i & (irt_is64(ir->t) ? 63 : 31); switch (shift) { case 0: break; case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break; default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break; } } else { /* Variable shifts implicitly use register cl (i.e. ecx). */ RegSet allow = rset_exclude(RSET_GPR, RID_ECX); Reg right = irr->r; if (ra_noreg(right)) { right = ra_allocref(as, rref, RID2RSET(RID_ECX)); } else if (right != RID_ECX) { rset_clear(allow, right); ra_scratch(as, RID2RSET(RID_ECX)); } dest = ra_dest(as, ir, allow); emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest); if (right != RID_ECX) { ra_noweak(as, right); emit_rr(as, XO_MOV, RID_ECX, right); } } ra_left(as, dest, ir->op1); /* ** Note: avoid using the flags resulting from a shift or rotate! ** All of them cause a partial flag stall, except for r,1 shifts ** (but not rotates). And a shift count of 0 leaves the flags unmodified. */ } /* -- Comparisons --------------------------------------------------------- */ /* Virtual flags for unordered FP comparisons. */ #define VCC_U 0x1000 /* Unordered. */ #define VCC_P 0x2000 /* Needs extra CC_P branch. */ #define VCC_S 0x4000 /* Swap avoids CC_P branch. */ #define VCC_PS (VCC_P|VCC_S) /* Map of comparisons to flags. ORDER IR. */ #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf)) static const uint16_t asm_compmap[IR_ABC+1] = { /* signed non-eq unsigned flags */ /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS), /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0), /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS), /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0), /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U), /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS), /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U), /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS), /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P), /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P), /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */ }; /* FP and integer comparisons. */ static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc) { if (irt_isnum(ir->t)) { IRRef lref = ir->op1; IRRef rref = ir->op2; Reg left, right; MCLabel l_around; /* ** An extra CC_P branch is required to preserve ordered/unordered ** semantics for FP comparisons. This can be avoided by swapping ** the operands and inverting the condition (except for EQ and UNE). ** So always try to swap if possible. ** ** Another option would be to swap operands to achieve better memory ** operand fusion. But it's unlikely that this outweighs the cost ** of the extra branches. */ if (cc & VCC_S) { /* Swap? */ IRRef tmp = lref; lref = rref; rref = tmp; cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */ } left = ra_alloc1(as, lref, RSET_FPR); right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left)); l_around = emit_label(as); asm_guardcc(as, cc >> 4); if (cc & VCC_P) { /* Extra CC_P branch required? */ if (!(cc & VCC_U)) { asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */ } else if (l_around != as->invmcp) { emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */ } else { /* Patched to mcloop by asm_loop_fixup. */ as->loopinv = 2; if (as->realign) emit_sjcc(as, CC_P, as->mcp); else emit_jcc(as, CC_P, as->mcp); } } emit_mrm(as, XO_UCOMISD, left, right); } else { IRRef lref = ir->op1, rref = ir->op2; IROp leftop = (IROp)(IR(lref)->o); Reg r64 = REX_64IR(ir, 0); int32_t imm = 0; lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isaddr(ir->t)); /* Swap constants (only for ABC) and fusable loads to the right. */ if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) { if ((cc & 0xc) == 0xc) cc ^= 3; /* L <-> G, LE <-> GE */ else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */ lref = ir->op2; rref = ir->op1; } if (asm_isk32(as, rref, &imm)) { IRIns *irl = IR(lref); /* Check wether we can use test ins. Not for unsigned, since CF=0. */ int usetest = (imm == 0 && (cc & 0xa) != 0x2); if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) { /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */ Reg right, left = RID_NONE; RegSet allow = RSET_GPR; if (!asm_isk32(as, irl->op2, &imm)) { left = ra_alloc1(as, irl->op2, allow); rset_clear(allow, left); } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */ IRIns *irll = IR(irl->op1); if (opisfusableload((IROp)irll->o) && (irt_isi8(irll->t) || irt_isu8(irll->t))) { IRType1 origt = irll->t; /* Temporarily flip types. */ irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT; as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseload(as, irl->op1, RSET_GPR); as->curins++; irll->t = origt; if (right != RID_MRM) goto test_nofuse; /* Fusion succeeded, emit test byte mrm, imm8. */ asm_guardcc(as, cc); emit_i8(as, (imm & 0xff)); emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM); return; } } as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseload(as, irl->op1, allow); as->curins++; /* Undo the above. */ test_nofuse: asm_guardcc(as, cc); if (ra_noreg(left)) { emit_i32(as, imm); emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right); } else { emit_mrm(as, XO_TEST, r64 + left, right); } } else { Reg left; if (opisfusableload((IROp)irl->o) && ((irt_isu8(irl->t) && checku8(imm)) || ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) || (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) { /* Only the IRT_INT case is fused by asm_fuseload. ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads ** are handled here. ** Note that cmp word [mem], imm16 should not be generated, ** since it has a length-changing prefix. Compares of a word ** against a sign-extended imm8 are ok, however. */ IRType1 origt = irl->t; /* Temporarily flip types. */ irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT; left = asm_fuseload(as, lref, RSET_GPR); irl->t = origt; if (left == RID_MRM) { /* Fusion succeeded? */ asm_guardcc(as, cc); emit_i8(as, imm); emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ? XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM); return; } /* Otherwise handle register case as usual. */ } else { left = asm_fuseload(as, lref, RSET_GPR); } asm_guardcc(as, cc); if (usetest && left != RID_MRM) { /* Use test r,r instead of cmp r,0. */ emit_rr(as, XO_TEST, r64 + left, left); if (irl+1 == ir) /* Referencing previous ins? */ as->testmcp = as->mcp; /* Set flag to drop test r,r if possible. */ } else { emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm); } } } else { Reg left = ra_alloc1(as, lref, RSET_GPR); Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left)); asm_guardcc(as, cc); emit_mrm(as, XO_CMP, r64 + left, right); } } } #if LJ_32 && LJ_HASFFI /* 64 bit integer comparisons in 32 bit mode. */ static void asm_comp_int64(ASMState *as, IRIns *ir) { uint32_t cc = asm_compmap[(ir-1)->o]; RegSet allow = RSET_GPR; Reg lefthi = RID_NONE, leftlo = RID_NONE; Reg righthi = RID_NONE, rightlo = RID_NONE; MCLabel l_around; x86ModRM mrm; as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */ /* Allocate/fuse hiword operands. */ if (irref_isk(ir->op2)) { lefthi = asm_fuseload(as, ir->op1, allow); } else { lefthi = ra_alloc1(as, ir->op1, allow); righthi = asm_fuseload(as, ir->op2, allow); if (righthi == RID_MRM) { if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base); if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx); } else { rset_clear(allow, righthi); } } mrm = as->mrm; /* Save state for hiword instruction. */ /* Allocate/fuse loword operands. */ if (irref_isk((ir-1)->op2)) { leftlo = asm_fuseload(as, (ir-1)->op1, allow); } else { leftlo = ra_alloc1(as, (ir-1)->op1, allow); rightlo = asm_fuseload(as, (ir-1)->op2, allow); if (rightlo == RID_MRM) { if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base); if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx); } else { rset_clear(allow, rightlo); } } /* All register allocations must be performed _before_ this point. */ l_around = emit_label(as); as->invmcp = as->testmcp = NULL; /* Cannot use these optimizations. */ /* Loword comparison and branch. */ asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */ if (ra_noreg(rightlo)) { int32_t imm = IR((ir-1)->op2)->i; if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM) emit_rr(as, XO_TEST, leftlo, leftlo); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm); } else { emit_mrm(as, XO_CMP, leftlo, rightlo); } /* Hiword comparison and branches. */ if ((cc & 15) != CC_NE) emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */ if ((cc & 15) != CC_E) asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */ as->mrm = mrm; /* Restore state. */ if (ra_noreg(righthi)) { int32_t imm = IR(ir->op2)->i; if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM) emit_rr(as, XO_TEST, lefthi, lefthi); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm); } else { emit_mrm(as, XO_CMP, lefthi, righthi); } } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_32 && LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ if (usehi || uselo) { if (irt_isfp(ir->t)) asm_conv_fp_int64(as, ir); else asm_conv_int64_fp(as, ir); } as->curins--; /* Always skip the CONV. */ return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ asm_comp_int64(as, ir); return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: asm_intarith(as, ir, uselo ? XOg_ADC : XOg_ADD); break; case IR_SUB: asm_intarith(as, ir, uselo ? XOg_SBB : XOg_SUB); break; case IR_NEG: { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, XOg_NEG, dest); if (uselo) { emit_i8(as, 0); emit_rr(as, XO_ARITHi8, XOg_ADC, dest); } ra_left(as, dest, ir->op1); break; } case IR_CALLN: ra_destreg(as, ir, RID_RETHI); if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RET)); /* Mark call as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by CNEWI itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */ #endif } /* -- Stack handling ------------------------------------------------------ */ /* Get extent of the stack for a snapshot. */ static BCReg asm_stack_extent(ASMState *as, SnapShot *snap, BCReg *ptopslot) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; BCReg baseslot = 0, topslot = 0; /* Must check all frames to find topslot (outer can be larger than inner). */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; if ((sn & SNAP_FRAME)) { IRIns *ir = IR(snap_ref(sn)); GCfunc *fn = ir_kfunc(ir); if (isluafunc(fn)) { BCReg s = snap_slot(sn); BCReg fs = s + funcproto(fn)->framesize; if (fs > topslot) topslot = fs; baseslot = s; } } } *ptopslot = topslot; return baseslot; } /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, Reg pbase, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore eax. */ Reg r = allow ? rset_pickbot(allow) : RID_EAX; emit_jcc(as, CC_B, exitstub_addr(as->J, exitno)); if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0); else ra_modified(as, r); emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot)); if (ra_hasreg(pbase) && pbase != r) emit_rr(as, XO_ARITH(XOg_SUB), r, pbase); else emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE, ptr2addr(&J2G(as->J)->jit_base)); emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack)); emit_getgl(as, r, jit_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; SnapEntry *flinks = map + nent + snap->depth; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs); } else { lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t)); if (!irref_isk(ref)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE)); emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs); } else if (!irt_ispri(ir->t)) { emit_movmroi(as, RID_BASE, ofs, ir->i); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s != 0) /* Do not overwrite link to previous frame. */ emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--)); } else { if (!(LJ_64 && irt_islightud(ir->t))) emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t)); } } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_rr(as, XO_TEST, RID_RET, RID_RET); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); emit_loada(as, tmp, J2G(as->J)); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), (int32_t)as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_sjcc(as, CC_B, l_end); emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold); emit_getgl(as, tmp, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- PHI and loop handling ----------------------------------------------- */ /* Break a PHI cycle by renaming to a free register (evict if needed). */ static void asm_phi_break(ASMState *as, RegSet blocked, RegSet blockedby, RegSet allow) { RegSet candidates = blocked & allow; if (candidates) { /* If this register file has candidates. */ /* Note: the set for ra_pick cannot be empty, since each register file ** has some registers never allocated to PHIs. */ Reg down, up = ra_pick(as, ~blocked & allow); /* Get a free register. */ if (candidates & ~blockedby) /* Optimize shifts, else it's a cycle. */ candidates = candidates & ~blockedby; down = rset_picktop(candidates); /* Pick candidate PHI register. */ ra_rename(as, down, up); /* And rename it to the free register. */ } } /* PHI register shuffling. ** ** The allocator tries hard to preserve PHI register assignments across ** the loop body. Most of the time this loop does nothing, since there ** are no register mismatches. ** ** If a register mismatch is detected and ... ** - the register is currently free: rename it. ** - the register is blocked by an invariant: restore/remat and rename it. ** - Otherwise the register is used by another PHI, so mark it as blocked. ** ** The renames are order-sensitive, so just retry the loop if a register ** is marked as blocked, but has been freed in the meantime. A cycle is ** detected if all of the blocked registers are allocated. To break the ** cycle rename one of them to a free register and retry. ** ** Note that PHI spill slots are kept in sync and don't need to be shuffled. */ static void asm_phi_shuffle(ASMState *as) { RegSet work; /* Find and resolve PHI register mismatches. */ for (;;) { RegSet blocked = RSET_EMPTY; RegSet blockedby = RSET_EMPTY; RegSet phiset = as->phiset; while (phiset) { /* Check all left PHI operand registers. */ Reg r = rset_picktop(phiset); IRIns *irl = IR(as->phireg[r]); Reg left = irl->r; if (r != left) { /* Mismatch? */ if (!rset_test(as->freeset, r)) { /* PHI register blocked? */ IRRef ref = regcost_ref(as->cost[r]); if (irt_ismarked(IR(ref)->t)) { /* Blocked by other PHI (w/reg)? */ rset_set(blocked, r); if (ra_hasreg(left)) rset_set(blockedby, left); left = RID_NONE; } else { /* Otherwise grab register from invariant. */ ra_restore(as, ref); checkmclim(as); } } if (ra_hasreg(left)) { ra_rename(as, left, r); checkmclim(as); } } rset_clear(phiset, r); } if (!blocked) break; /* Finished. */ if (!(as->freeset & blocked)) { /* Break cycles if none are free. */ asm_phi_break(as, blocked, blockedby, RSET_GPR); asm_phi_break(as, blocked, blockedby, RSET_FPR); checkmclim(as); } /* Else retry some more renames. */ } /* Restore/remat invariants whose registers are modified inside the loop. */ work = as->modset & ~(as->freeset | as->phiset); while (work) { Reg r = rset_picktop(work); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(work, r); checkmclim(as); } /* Allocate and save all unsaved PHI regs and clear marks. */ work = as->phiset; while (work) { Reg r = rset_picktop(work); IRRef lref = as->phireg[r]; IRIns *ir = IR(lref); if (ra_hasspill(ir->s)) { /* Left PHI gained a spill slot? */ irt_clearmark(ir->t); /* Handled here, so clear marker now. */ ra_alloc1(as, lref, RID2RSET(r)); ra_save(as, ir, r); /* Save to spill slot inside the loop. */ checkmclim(as); } rset_clear(work, r); } } /* Emit renames for left PHIs which are only spilled outside the loop. */ static void asm_phi_fixup(ASMState *as) { RegSet work = as->phiset; while (work) { Reg r = rset_picktop(work); IRRef lref = as->phireg[r]; IRIns *ir = IR(lref); /* Left PHI gained a spill slot before the loop? */ if (irt_ismarked(ir->t) && ra_hasspill(ir->s)) { IRRef ren; lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), lref, as->loopsnapno); ren = tref_ref(lj_ir_emit(as->J)); as->ir = as->T->ir; /* The IR may have been reallocated. */ IR(ren)->r = (uint8_t)r; IR(ren)->s = SPS_NONE; } irt_clearmark(ir->t); /* Always clear marker. */ rset_clear(work, r); } } /* Setup right PHI reference. */ static void asm_phi(ASMState *as, IRIns *ir) { RegSet allow = (irt_isnum(ir->t) ? RSET_FPR : RSET_GPR) & ~as->phiset; RegSet afree = (as->freeset & allow); IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); /* Spill slot shuffling is not implemented yet (but rarely needed). */ if (ra_hasspill(irl->s) || ra_hasspill(irr->s)) lj_trace_err(as->J, LJ_TRERR_NYIPHI); /* Leave at least one register free for non-PHIs (and PHI cycle breaking). */ if ((afree & (afree-1))) { /* Two or more free registers? */ Reg r; if (ra_noreg(irr->r)) { /* Get a register for the right PHI. */ r = ra_allocref(as, ir->op2, allow); } else { /* Duplicate right PHI, need a copy (rare). */ r = ra_scratch(as, allow); ra_movrr(as, irr, r, irr->r); } ir->r = (uint8_t)r; rset_set(as->phiset, r); as->phireg[r] = (IRRef1)ir->op1; irt_setmark(irl->t); /* Marks left PHIs _with_ register. */ if (ra_noreg(irl->r)) ra_sethint(irl->r, r); /* Set register hint for left PHI. */ } else { /* Otherwise allocate a spill slot. */ /* This is overly restrictive, but it triggers only on synthetic code. */ if (ra_hasreg(irl->r) || ra_hasreg(irr->r)) lj_trace_err(as->J, LJ_TRERR_NYIPHI); ra_spill(as, ir); irl->s = irr->s = ir->s; /* Sync left/right PHI spill slots. */ } } /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->realign) { /* Realigned loops use short jumps. */ as->realign = NULL; /* Stop another retry. */ lua_assert(((intptr_t)target & 15) == 0); if (as->loopinv) { /* Inverted loop branch? */ p -= 5; p[0] = XI_JMP; lua_assert(target - p >= -128); p[-1] = (MCode)(target - p); /* Patch sjcc. */ if (as->loopinv == 2) p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */ } else { lua_assert(target - p >= -128); p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */ p[-2] = XI_JMPs; } } else { MCode *newloop; p[-5] = XI_JMP; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the jcc and patched the jmp. */ p -= 5; newloop = target+4; *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */ if (as->loopinv == 2) { *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */ newloop = target+8; } } else { /* Otherwise just patch jmp. */ *(int32_t *)(p-4) = (int32_t)(target - p); newloop = target+3; } /* Realign small loops and shorten the loop branch. */ if (newloop >= p - 128) { as->realign = newloop; /* Force a retry and remember alignment. */ as->curins = as->stopins; /* Abort asm_trace now. */ as->T->nins = as->orignins; /* Remove any added renames. */ } } } /* Middle part of a loop. */ static void asm_loop(ASMState *as) { /* LOOP is a guard, so the snapno is up to date. */ as->loopsnapno = as->snapno; if (as->gcsteps) asm_gc_check(as); /* LOOP marks the transition from the variant to the invariant part. */ as->testmcp = as->invmcp = NULL; as->sectref = 0; if (!neverfuse(as)) as->fuseref = 0; asm_phi_shuffle(as); asm_loop_fixup(as); as->mcloop = as->mcp; RA_DBGX((as, "===== LOOP =====")); if (!as->realign) RA_DBG_FLUSH(); } /* -- Head of trace ------------------------------------------------------- */ /* Calculate stack adjustment. */ static int32_t asm_stack_adjust(ASMState *as) { if (as->evenspill <= SPS_FIXED) return 0; return sps_scale((as->evenspill - SPS_FIXED + 3) & ~3); } /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_rr(as, XO_MOV, r, RID_BASE); } } /* Head of a root trace. */ static void asm_head_root(ASMState *as) { int32_t spadj; asm_head_root_base(as); emit_setgli(as, vmstate, (int32_t)as->T->traceno); spadj = asm_stack_adjust(as); as->T->spadjust = (uint16_t)spadj; emit_addptr(as, RID_ESP|REX_64, -spadj); /* Root traces assume a checked stack for the starting proto. */ as->T->topslot = gcref(as->T->startpt)->pt.framesize; } /* Coalesce or reload BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, Reg pbase, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (pbase == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(pbase) && rset_test(as->freeset, pbase)) { rset_clear(allow, pbase); emit_rr(as, XO_MOV, r, pbase); /* Move from coalesced parent register. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* Head of a side trace. ** ** The current simplistic algorithm requires that all slots inherited ** from the parent are live in a register between pass 2 and pass 3. This ** avoids the complexity of stack slot shuffling. But of course this may ** overflow the register set in some cases and cause the dreaded error: ** "NYI: register coalescing too complex". A refined algorithm is needed. */ static void asm_head_side(ASMState *as) { IRRef1 sloadins[RID_MAX]; RegSet allow = RSET_ALL; /* Inverse of all coalesced registers. */ RegSet live = RSET_EMPTY; /* Live parent registers. */ Reg pbase = as->parent->ir[REF_BASE].r; /* Parent base register (if any). */ int32_t spadj, spdelta; int pass2 = 0; int pass3 = 0; IRRef i; allow = asm_head_side_base(as, pbase, allow); /* Scan all parent SLOADs and collect register dependencies. */ for (i = as->stopins; i > REF_BASE; i--) { IRIns *ir = IR(i); RegSP rs; lua_assert(ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_PARENT)); rs = as->parentmap[ir->op1]; if (ra_hasreg(ir->r)) { rset_clear(allow, ir->r); if (ra_hasspill(ir->s)) ra_save(as, ir, ir->r); } else if (ra_hasspill(ir->s)) { irt_setmark(ir->t); pass2 = 1; } if (ir->r == rs) { /* Coalesce matching registers right now. */ ra_free(as, ir->r); } else if (ra_hasspill(regsp_spill(rs))) { if (ra_hasreg(ir->r)) pass3 = 1; } else if (ra_used(ir)) { sloadins[rs] = (IRRef1)i; rset_set(live, rs); /* Block live parent register. */ } } /* Calculate stack frame adjustment. */ spadj = asm_stack_adjust(as); spdelta = spadj - (int32_t)as->parent->spadjust; if (spdelta < 0) { /* Don't shrink the stack frame. */ spadj = (int32_t)as->parent->spadjust; spdelta = 0; } as->T->spadjust = (uint16_t)spadj; /* Reload spilled target registers. */ if (pass2) { for (i = as->stopins; i > REF_BASE; i--) { IRIns *ir = IR(i); if (irt_ismarked(ir->t)) { RegSet mask; Reg r; RegSP rs; irt_clearmark(ir->t); rs = as->parentmap[ir->op1]; if (!ra_hasspill(regsp_spill(rs))) ra_sethint(ir->r, rs); /* Hint may be gone, set it again. */ else if (sps_scale(regsp_spill(rs))+spdelta == sps_scale(ir->s)) continue; /* Same spill slot, do nothing. */ mask = (irt_isnum(ir->t) ? RSET_FPR : RSET_GPR) & allow; if (mask == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); r = ra_allocref(as, i, mask); ra_save(as, ir, r); rset_clear(allow, r); if (r == rs) { /* Coalesce matching registers right now. */ ra_free(as, r); rset_clear(live, r); } else if (ra_hasspill(regsp_spill(rs))) { pass3 = 1; } checkmclim(as); } } } /* Store trace number and adjust stack frame relative to the parent. */ emit_setgli(as, vmstate, (int32_t)as->T->traceno); emit_addptr(as, RID_ESP|REX_64, -spdelta); /* Restore target registers from parent spill slots. */ if (pass3) { RegSet work = ~as->freeset & RSET_ALL; while (work) { Reg r = rset_pickbot(work); IRIns *ir = IR(regcost_ref(as->cost[r])); RegSP rs = as->parentmap[ir->op1]; rset_clear(work, r); if (ra_hasspill(regsp_spill(rs))) { int32_t ofs = sps_scale(regsp_spill(rs)); ra_free(as, r); if (r < RID_MAX_GPR) emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs); else emit_rmro(as, XMM_MOVRM(as), r, RID_ESP, ofs); checkmclim(as); } } } /* Shuffle registers to match up target regs with parent regs. */ for (;;) { RegSet work; /* Repeatedly coalesce free live registers by moving to their target. */ while ((work = as->freeset & live) != RSET_EMPTY) { Reg rp = rset_pickbot(work); IRIns *ir = IR(sloadins[rp]); rset_clear(live, rp); rset_clear(allow, rp); ra_free(as, ir->r); ra_movrr(as, ir, ir->r, rp); checkmclim(as); } /* We're done if no live registers remain. */ if (live == RSET_EMPTY) break; /* Break cycles by renaming one target to a temp. register. */ if (live & RSET_GPR) { RegSet tmpset = as->freeset & ~live & allow & RSET_GPR; if (tmpset == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); ra_rename(as, rset_pickbot(live & RSET_GPR), rset_pickbot(tmpset)); } if (live & RSET_FPR) { RegSet tmpset = as->freeset & ~live & allow & RSET_FPR; if (tmpset == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); ra_rename(as, rset_pickbot(live & RSET_FPR), rset_pickbot(tmpset)); } checkmclim(as); /* Continue with coalescing to fix up the broken cycle(s). */ } /* Inherit top stack slot already checked by parent trace. */ as->T->topslot = as->parent->topslot; if (as->topslot > as->T->topslot) { /* Need to check for higher slot? */ as->T->topslot = (uint8_t)as->topslot; /* Remember for child traces. */ /* Reuse the parent exit in the context of the parent trace. */ asm_stack_check(as, as->topslot, pbase, allow & RSET_GPR, as->J->exitno); } } /* -- Tail of trace ------------------------------------------------------- */ /* Link to another trace. */ static void asm_tail_link(ASMState *as) { SnapNo snapno = as->T->nsnap-1; /* Last snapshot. */ SnapShot *snap = &as->T->snap[snapno]; BCReg baseslot = asm_stack_extent(as, snap, &as->topslot); checkmclim(as); ra_allocref(as, REF_BASE, RID2RSET(RID_BASE)); if (as->T->link == TRACE_INTERP) { /* Setup fixed registers for exit to interpreter. */ const BCIns *pc = snap_pc(as->T->snapmap[snap->mapofs + snap->nent]); int32_t mres; if (bc_op(*pc) == BC_JLOOP) { /* NYI: find a better way to do this. */ BCIns *retpc = &traceref(as->J, bc_d(*pc))->startins; if (bc_isret(bc_op(*retpc))) pc = retpc; } emit_loada(as, RID_DISPATCH, J2GG(as->J)->dispatch); emit_loada(as, RID_PC, pc); mres = (int32_t)(snap->nslots - baseslot); switch (bc_op(*pc)) { case BC_CALLM: case BC_CALLMT: mres -= (int32_t)(1 + bc_a(*pc) + bc_c(*pc)); break; case BC_RETM: mres -= (int32_t)(bc_a(*pc) + bc_d(*pc)); break; case BC_TSETM: mres -= (int32_t)bc_a(*pc); break; default: if (bc_op(*pc) < BC_FUNCF) mres = 0; break; } emit_loadi(as, RID_RET, mres); /* Return MULTRES or 0. */ } else if (baseslot) { /* Save modified BASE for linking to trace with higher start frame. */ emit_setgl(as, RID_BASE, jit_base); } emit_addptr(as, RID_BASE, 8*(int32_t)baseslot); /* Sync the interpreter state with the on-trace state. */ asm_stack_restore(as, snap); /* Root traces that grow the stack need to check the stack at the end. */ if (!as->parent && as->topslot) asm_stack_check(as, as->topslot, RID_BASE, as->freeset & RSET_GPR, snapno); } /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */ MCode *p = as->mctop; MCode *target, *q; int32_t spadj = as->T->spadjust; if (spadj == 0) { p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0); } else { MCode *p1; /* Patch stack adjustment. */ if (checki8(spadj)) { p -= 3; p1 = p-6; *p1 = (MCode)spadj; } else { p1 = p-9; *(int32_t *)p1 = spadj; } if ((as->flags & JIT_F_LEA_AGU)) { #if LJ_64 p1[-4] = 0x48; #endif p1[-3] = (MCode)XI_LEA; p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP); p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { #if LJ_64 p1[-3] = 0x48; #endif p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi); p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP); } } /* Patch exit branch. */ target = lnk == TRACE_INTERP ? (MCode *)lj_vm_exit_interp : traceref(as->J, lnk)->mcode; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_JMP; /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */ for (q = as->mctop-1; q >= p; q--) *q = XI_NOP; as->mctop = p; } /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; /* Guarded assertions. */ case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_EQ: case IR_NE: case IR_ABC: asm_comp(as, ir, asm_compmap[ir->o]); break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); case IR_BSWAP: asm_bitswap(as, ir); break; case IR_BAND: asm_intarith(as, ir, XOg_AND); break; case IR_BOR: asm_intarith(as, ir, XOg_OR); break; case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break; case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break; case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break; case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break; case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break; case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break; /* Arithmetic ops. */ case IR_ADD: asm_add(as, ir); break; case IR_SUB: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_SUBSD); else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */ asm_intarith(as, ir, XOg_SUB); break; case IR_MUL: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MULSD); else asm_intarith(as, ir, XOg_X_IMUL); break; case IR_DIV: #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); else #endif asm_fparith(as, ir, XO_DIVSD); break; case IR_MOD: #if LJ_64 && LJ_HASFFI asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); #else lua_assert(0); #endif break; case IR_NEG: if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_XORPS); else asm_neg_not(as, ir, XOg_NEG); break; case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break; case IR_MIN: asm_fparith(as, ir, XO_MINSD); break; case IR_MAX: asm_fparith(as, ir, XO_MAXSD); break; case IR_FPMATH: case IR_ATAN2: case IR_LDEXP: asm_fpmath(as, ir); break; case IR_POW: #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); else #endif asm_fppowi(as, ir); break; /* Overflow-checking arithmetic ops. Note: don't use LEA here! */ case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break; case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break; /* Allocations. */ case IR_SNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_TOBIT: asm_tobit(as, ir); break; case IR_CONV: asm_conv(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* Assemble a trace in linear backwards order. */ static void asm_trace(ASMState *as) { for (as->curins--; as->curins > as->stopins; as->curins--) { IRIns *ir = IR(as->curins); lua_assert(!(LJ_32 && irt_isint64(ir->t))); /* Handled by SPLIT. */ if (!ra_used(ir) && !ir_sideeff(ir) && (as->flags & JIT_F_OPT_DCE)) continue; /* Dead-code elimination can be soooo easy. */ if (irt_isguard(ir->t)) asm_snap_prep(as); RA_DBG_REF(); checkmclim(as); asm_ir(as, ir); } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX]; uint32_t nargs = (int)CCI_NARGS(ci); int nslots = 0; asm_collectargs(as, ir, ci, args); #if LJ_64 if (LJ_ABI_WIN) { nslots = (int)(nargs*2); /* Only matters for more than four args. */ } else { uint32_t i; int ngpr = 6, nfpr = 8; for (i = 0; i < nargs; i++) if (irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots += 2; } } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); #else if ((ci->flags & CCI_FASTCALL)) { lua_assert(nargs <= 2); } else { uint32_t i; for (i = 0; i < nargs; i++) nslots += irt_isnum(IR(args[i])->t) ? 2 : 1; if (nslots > as->evenspill) /* Leave room for args. */ as->evenspill = nslots; } return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET); #endif } /* Clear reg/sp for all instructions and add register hints. */ static void asm_setup_regsp(ASMState *as, GCtrace *T) { IRRef i, nins; int inloop; ra_setup(as); /* Clear reg/sp for constants. */ for (i = T->nk; i < REF_BIAS; i++) IR(i)->prev = REGSP_INIT; /* REF_BASE is used for implicit references to the BASE register. */ IR(REF_BASE)->prev = REGSP_HINT(RID_BASE); nins = T->nins; if (IR(nins-1)->o == IR_RENAME) { do { nins--; } while (IR(nins-1)->o == IR_RENAME); T->nins = nins; /* Remove any renames left over from ASM restart. */ } as->snaprename = nins; as->snapref = nins; as->snapno = T->nsnap; as->stopins = REF_BASE; as->orignins = nins; as->curins = nins; inloop = 0; as->evenspill = SPS_FIRST; for (i = REF_FIRST; i < nins; i++) { IRIns *ir = IR(i); switch (ir->o) { case IR_LOOP: inloop = 1; break; /* Set hints for slot loads from a parent trace. */ case IR_SLOAD: if ((ir->op2 & IRSLOAD_PARENT)) { RegSP rs = as->parentmap[ir->op1]; lua_assert(regsp_used(rs)); as->stopins = i; if (!ra_hasspill(regsp_spill(rs)) && ra_hasreg(regsp_reg(rs))) { ir->prev = (uint16_t)REGSP_HINT(regsp_reg(rs)); continue; } } break; case IR_CALLXS: { CCallInfo ci; ci.flags = asm_callx_flags(as, ir); ir->prev = asm_setup_call_slots(as, ir, &ci); if (inloop) as->modset |= RSET_SCRATCH; continue; } case IR_CALLN: case IR_CALLL: case IR_CALLS: { const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; ir->prev = asm_setup_call_slots(as, ir, ci); if (inloop) as->modset |= (ci->flags & CCI_NOFPRCLOBBER) ? (RSET_SCRATCH & ~RSET_FPR) : RSET_SCRATCH; continue; } #if LJ_32 && LJ_HASFFI case IR_HIOP: if ((ir-1)->o == IR_CALLN) { ir->prev = REGSP_HINT(RID_RETHI); continue; } break; #endif /* C calls evict all scratch regs and return results in RID_RET. */ case IR_SNEW: case IR_NEWREF: #if !LJ_64 if (as->evenspill < 3) /* lj_str_new and lj_tab_newkey need 3 args. */ as->evenspill = 3; #endif case IR_TNEW: case IR_TDUP: case IR_CNEW: case IR_CNEWI: case IR_TOSTR: ir->prev = REGSP_HINT(RID_RET); if (inloop) as->modset = RSET_SCRATCH; continue; case IR_STRTO: case IR_OBAR: if (inloop) as->modset = RSET_SCRATCH; break; case IR_POW: if (irt_isnum(ir->t)) { ir->prev = REGSP_HINT(RID_XMM0); if (inloop) as->modset |= RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX); continue; } /* fallthrough */ case IR_DIV: case IR_MOD: #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) { ir->prev = REGSP_HINT(RID_RET); if (inloop) as->modset |= (RSET_SCRATCH & RSET_GPR); continue; } #endif break; case IR_FPMATH: if (ir->op2 == IRFPM_EXP2) { /* May be joined to lj_vm_pow_sse. */ ir->prev = REGSP_HINT(RID_XMM0); #if !LJ_64 if (as->evenspill < 4) /* Leave room for 16 byte scratch area. */ as->evenspill = 4; #endif if (inloop) as->modset |= RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX); continue; } else if (ir->op2 <= IRFPM_TRUNC && !(as->flags & JIT_F_SSE4_1)) { ir->prev = REGSP_HINT(RID_XMM0); if (inloop) as->modset |= RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX); continue; } break; /* Non-constant shift counts need to be in RID_ECX. */ case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR: if (!irref_isk(ir->op2) && !ra_hashint(IR(ir->op2)->r)) { IR(ir->op2)->r = REGSP_HINT(RID_ECX); if (inloop) rset_set(as->modset, RID_ECX); } break; /* Do not propagate hints across type conversions. */ case IR_CONV: case IR_TOBIT: break; default: /* Propagate hints across likely 'op reg, imm' or 'op reg'. */ if (irref_isk(ir->op2) && !irref_isk(ir->op1)) { ir->prev = IR(ir->op1)->prev; continue; } break; } ir->prev = REGSP_INIT; } if ((as->evenspill & 1)) as->oddspill = as->evenspill++; else as->oddspill = 0; } /* -- Assembler core ------------------------------------------------------ */ /* Define this if you want to run LuaJIT with Valgrind. */ #ifdef LUAJIT_USE_VALGRIND #include #define VG_INVALIDATE(p, sz) VALGRIND_DISCARD_TRANSLATIONS(p, sz) #else #define VG_INVALIDATE(p, sz) ((void)0) #endif /* Assemble a trace. */ void lj_asm_trace(jit_State *J, GCtrace *T) { ASMState as_; ASMState *as = &as_; /* Setup initial state. Copy some fields to reduce indirections. */ as->J = J; as->T = T; as->ir = T->ir; as->flags = J->flags; as->loopref = J->loopref; as->realign = NULL; as->loopinv = 0; if (J->parent) { as->parent = traceref(J, J->parent); lj_snap_regspmap(as->parentmap, as->parent, J->exitno); } else { as->parent = NULL; } as->mctop = lj_mcode_reserve(J, &as->mcbot); /* Reserve MCode memory. */ as->mcp = as->mctop; as->mclim = as->mcbot + MCLIM_REDZONE; asm_exitstub_setup(as, T->nsnap); do { as->mcp = as->mctop; as->curins = T->nins; RA_DBG_START(); RA_DBGX((as, "===== STOP =====")); /* Realign and leave room for backwards loop branch or exit branch. */ if (as->realign) { int i = ((int)(intptr_t)as->realign) & 15; MCode *p = as->mctop; /* Fill unused mcode tail with NOPs to make the prefetcher happy. */ while (i-- > 0) *--p = XI_NOP; as->mctop = p; as->mcp = p - (as->loopinv ? 5 : 2); /* Space for short/near jmp. */ } else { as->mcp = as->mctop - 5; /* Space for exit branch (near jmp). */ } as->invmcp = as->mcp; as->mcloop = NULL; as->testmcp = NULL; as->topslot = 0; as->gcsteps = 0; as->sectref = as->loopref; as->fuseref = (as->flags & JIT_F_OPT_FUSE) ? as->loopref : FUSE_DISABLED; /* Setup register allocation. */ asm_setup_regsp(as, T); if (!as->loopref) { /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */ as->mcp -= (as->flags & JIT_F_LEA_AGU) ? 7 : 6 + (LJ_64 ? 1 : 0); as->invmcp = NULL; asm_tail_link(as); } asm_trace(as); } while (as->realign); /* Retry in case the MCode needs to be realigned. */ RA_DBG_REF(); checkmclim(as); if (as->gcsteps) { as->curins = as->T->snap[0].ref; asm_snap_prep(as); /* The GC check is a guard. */ asm_gc_check(as); } ra_evictk(as); if (as->parent) asm_head_side(as); else asm_head_root(as); asm_phi_fixup(as); RA_DBGX((as, "===== START ====")); RA_DBG_FLUSH(); if (as->freeset != RSET_ALL) lj_trace_err(as->J, LJ_TRERR_BADRA); /* Ouch! Should never happen. */ /* Set trace entry point before fixing up tail to allow link to self. */ T->mcode = as->mcp; T->mcloop = as->mcloop ? (MSize)(as->mcloop - as->mcp) : 0; if (!as->loopref) asm_tail_fixup(as, T->link); /* Note: this may change as->mctop! */ T->szmcode = (MSize)(as->mctop - as->mcp); VG_INVALIDATE(T->mcode, T->szmcode); } /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *mcarea = lj_mcode_patch(J, p, 0); MSize len = T->szmcode; MCode *px = exitstub_addr(J, exitno) - 6; MCode *pe = p+len-6; uint32_t stateaddr = u32ptr(&J2G(J)->vmstate); if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px) *(int32_t *)(p+len-4) = jmprel(p+len, target); /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */ for (; p < pe; p++) if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) { p += LJ_64 ? 11 : 10; break; } lua_assert(p < pe); for (; p < pe; p++) { if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) { *(int32_t *)(p+2) = jmprel(p+6, target); p += 5; } } lj_mcode_patch(J, mcarea, 1); VG_INVALIDATE(T->mcode, T->szmcode); } #undef IR #endif