|// Low-level VM code for x86 CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2009 Mike Pall. See Copyright Notice in luajit.h | |.arch x86 |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// This is very fragile and has many dependencies. Caveat emptor. |.define BASE, edx // Not C callee-save, refetched anyway. |.define KBASE, edi // Must be C callee-save. |.define PC, esi // Must be C callee-save. |.define DISPATCH, ebx // Must be C callee-save. | |.define RA, ecx |.define RAL, cl |.define RB, ebp // Must be ebp (C callee-save). |.define RC, eax // Must be eax (fcomparepp and others). |.define RCW, ax |.define RCH, ah |.define RCL, al |.define OP, RB |.define RD, RC |.define RDL, RCL | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS, int |.type TRACE, Trace |.type EXITINFO, ExitInfo | |// Stack layout while in interpreter. Must match with lj_frame.h. |.macro saveregs | push ebp; push edi; push esi; push ebx |.endmacro |.macro restoreregs | pop ebx; pop esi; pop edi; pop ebp |.endmacro |.define CFRAME_SPACE, aword*7 // Delta for esp (see <--). | |.define INARG_4, aword [esp+aword*15] |.define INARG_3, aword [esp+aword*14] |.define INARG_2, aword [esp+aword*13] |.define INARG_1, aword [esp+aword*12] |//----- 16 byte aligned, ^^^ arguments from C caller |.define SAVE_RET, aword [esp+aword*11] //<-- esp entering interpreter. |.define SAVE_R4, aword [esp+aword*10] |.define SAVE_R3, aword [esp+aword*9] |.define SAVE_R2, aword [esp+aword*8] |//----- 16 byte aligned |.define SAVE_R1, aword [esp+aword*7] //<-- esp after register saves. |.define SAVE_PC, aword [esp+aword*6] |.define ARG6, aword [esp+aword*5] |.define ARG5, aword [esp+aword*4] |//----- 16 byte aligned |.define ARG4, aword [esp+aword*3] |.define ARG3, aword [esp+aword*2] |.define ARG2, aword [esp+aword*1] |.define ARG1, aword [esp] //<-- esp while in interpreter. |//----- 16 byte aligned, ^^^ arguments for C callee | |// FPARGx overlaps ARGx and ARG(x+1) on x86. |.define FPARG5, qword [esp+qword*2] |.define FPARG3, qword [esp+qword*1] |.define FPARG1, qword [esp] |// NRESULTS overlaps ARG6 (and FPARG5) |.define NRESULTS, ARG6 | |// Arguments for vm_call and vm_pcall. |.define INARG_P_ERRF, INARG_4 // vm_pcall only. |.define INARG_NRES, INARG_3 |.define INARG_BASE, INARG_2 |.define SAVE_L, INARG_1 | |.define SAVE_CFRAME, INARG_BASE // Overwrites INARG_BASE! | |// Arguments for vm_cpcall. |.define INARG_CP_UD, INARG_4 |.define INARG_CP_FUNC, INARG_3 |.define INARG_CP_CALL, INARG_2 | |//----------------------------------------------------------------------- | |// Instruction headers. |.macro ins_A; .endmacro |.macro ins_AD; .endmacro |.macro ins_AJ; .endmacro |.macro ins_ABC; movzx RB, RCH; movzx RC, RCL; .endmacro |.macro ins_AB_; movzx RB, RCH; .endmacro |.macro ins_A_C; movzx RC, RCL; .endmacro |.macro ins_AND; not RD; .endmacro | |// Instruction decode+dispatch. Carefully tuned (nope, lodsd is not faster). |.macro ins_NEXT | mov RC, [PC] | movzx RA, RCH | movzx OP, RCL | add PC, 4 | shr RC, 16 | jmp aword [DISPATCH+OP*4] |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | // Around 10%-30% slower on Core2, a lot more slower on P4. | .macro ins_next | jmp ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checktp, reg, tp; cmp dword [BASE+reg*8+4], tp; .endmacro |.macro checknum, reg, target; checktp reg, LJ_TISNUM; ja target; .endmacro |.macro checkstr, reg, target; checktp reg, LJ_TSTR; jne target; .endmacro |.macro checktab, reg, target; checktp reg, LJ_TTAB; jne target; .endmacro | |// These operands must be used with movzx. |.define PC_OP, byte [PC-4] |.define PC_RA, byte [PC-3] |.define PC_RB, byte [PC-1] |.define PC_RC, byte [PC-2] |.define PC_RD, word [PC-2] | |.macro branchPC, reg | lea PC, [PC+reg*4-BCBIAS_J*4] |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | |// Decrement hashed hotcount and trigger trace recorder if zero. |.macro hotloop, reg | mov reg, PC | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], 1 | jz ->vm_hotloop |.endmacro | |.macro hotcall, reg | mov reg, PC | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], 1 | jz ->vm_hotcall |.endmacro | |// Set current VM state. |.macro set_vmstate, st | mov dword [DISPATCH+DISPATCH_GL(vmstate)], ~LJ_VMST_..st |.endmacro | |// Annoying x87 stuff: support for two compare variants. |.macro fcomparepp // Compare and pop st0 >< st1. ||if (cmov) { | fucomip st1 | fpop ||} else { | fucompp | fnstsw ax // eax modified! | sahf ||} |.endmacro | |.macro fdup; fld st0; .endmacro |.macro fpop1; fstp st1; .endmacro | |// Move table write barrier back. Overwrites reg. |.macro barrierback, tab, reg | and byte tab->marked, cast_byte(~LJ_GC_BLACK) // black2gray(tab) | mov reg, [DISPATCH+DISPATCH_GL(gc.grayagain)] | mov [DISPATCH+DISPATCH_GL(gc.grayagain)], tab | mov tab->gclist, reg |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx, int cmov) { |.code_sub | |//----------------------------------------------------------------------- |//-- Call and return handling ------------------------------------------- |//----------------------------------------------------------------------- | |// Reminder: A call gate may be called with func/args above L->maxstack, |// i.e. occupying EXTRA_STACK slots. And vmeta_call may add one extra slot, |// too. This means all call gates (L*, C and fast functions) must check |// for stack overflow _before_ adding more slots! | |//-- Call gates --------------------------------------------------------- | |->gate_lf: // Call gate for fixarg Lua functions. | // RA = new base, RB = LFUNC, RC = nargs+1, (BASE = old base), PC = return | // DISPATCH initialized | mov BASE, RA | mov PROTO:RB, LFUNC:RB->pt | mov [BASE-4], PC // Store caller PC. | movzx RA, byte PROTO:RB->framesize | mov PC, PROTO:RB->bc | mov KBASE, PROTO:RB->k | mov L:RB, SAVE_L | lea RA, [BASE+RA*8] // Top of frame. | lea RC, [BASE+NARGS:RC*8-4] // Points to tag of 1st free slot. | cmp RA, L:RB->maxstack | ja ->gate_lf_growstack |9: // Entry point from vararg setup below. | mov RB, LJ_TNIL |1: // Clear free slots until top of frame. | mov [RC], RB | mov [RC+8], RB | add RC, 16 | cmp RC, RA | jb <1 #if LJ_HASJIT | // NYI: Disabled, until the tracer supports recursion/upcalls/leaves. | // hotcall RB #endif | ins_next | |->gate_lv: // Call gate for vararg Lua functions. | // RA = new base, RB = LFUNC, RC = nargs+1, (BASE = old base), PC = return | // DISPATCH initialized | mov [RA-4], PC // Store caller PC. | lea PC, [NARGS:RC*8+FRAME_VARG] | lea BASE, [RA+PC-FRAME_VARG] | mov [BASE-8], LFUNC:RB // Store copy of LFUNC. | mov PROTO:RB, LFUNC:RB->pt | mov [BASE-4], PC // Store delta + FRAME_VARG. | movzx PC, byte PROTO:RB->framesize | lea KBASE, [BASE+PC*8] | mov L:PC, SAVE_L | lea RC, [BASE+4] | cmp KBASE, L:PC->maxstack | ja ->gate_lv_growstack // Need to grow stack. | movzx PC, byte PROTO:RB->numparams | test PC, PC | jz >2 |1: // Copy fixarg slots up. | add RA, 8 | cmp RA, BASE | jnb >2 | mov KBASE, [RA-8] | mov [RC-4], KBASE | mov KBASE, [RA-4] | mov [RC], KBASE | add RC, 8 | mov dword [RA-4], LJ_TNIL // Clear old fixarg slot (help the GC). | sub PC, 1 | jnz <1 |2: | movzx RA, byte PROTO:RB->framesize | mov PC, PROTO:RB->bc | mov KBASE, PROTO:RB->k | lea RA, [BASE+RA*8] | jmp <9 | |->gate_cwrap: // Call gate for wrapped C functions. | // RA = new base, RB = CFUNC, RC = nargs+1, (BASE = old base), PC = return | mov [RA-4], PC | mov KBASE, CFUNC:RB->f | mov L:RB, SAVE_L | lea RC, [RA+NARGS:RC*8-8] | mov L:RB->base, RA | lea RA, [RC+8*LUA_MINSTACK] | mov ARG2, KBASE | mov ARG1, L:RB | mov L:RB->top, RC | cmp RA, L:RB->maxstack | ja ->gate_c_growstack // Need to grow stack. | set_vmstate C | // (lua_State *L, lua_CFunction f) | call aword [DISPATCH+DISPATCH_GL(wrapf)] | set_vmstate INTERP | // nresults returned in eax (RD). | mov BASE, L:RB->base | lea RA, [BASE+RD*8] | neg RA | add RA, L:RB->top // RA = (L->top-(L->base+nresults))*8 |->vm_returnc: | add RD, 1 // RD = nresults+1 | mov NRESULTS, RD | test PC, FRAME_TYPE | jz ->BC_RET_Z // Handle regular return to Lua. | jmp ->vm_return | |->gate_c: // Call gate for C functions. | // RA = new base, RB = CFUNC, RC = nargs+1, (BASE = old base), PC = return | mov [RA-4], PC | mov KBASE, CFUNC:RB->f | mov L:RB, SAVE_L | lea RC, [RA+NARGS:RC*8-8] | mov L:RB->base, RA | lea RA, [RC+8*LUA_MINSTACK] | mov ARG1, L:RB | mov L:RB->top, RC | cmp RA, L:RB->maxstack | ja ->gate_c_growstack // Need to grow stack. | set_vmstate C | call KBASE // (lua_State *L) | set_vmstate INTERP | // nresults returned in eax (RD). | mov BASE, L:RB->base | lea RA, [BASE+RD*8] | neg RA | add RA, L:RB->top // RA = (L->top-(L->base+nresults))*8 |->vm_returnc: | add RD, 1 // RD = nresults+1 | mov NRESULTS, RD | test PC, FRAME_TYPE | jz ->BC_RET_Z // Handle regular return to Lua. | // Fallthrough. | |//-- Return handling (non-inline) --------------------------------------- | |->vm_return: | // BASE = base, RA = resultofs, RD = nresults+1 (= NRESULTS), PC = return | test PC, FRAME_C | jz ->vm_returnp | | // Return to C. | set_vmstate C | and PC, -8 | sub PC, BASE | neg PC // Previous base = BASE - delta. | | sub RD, 1 | jz >2 |1: | mov RB, [BASE+RA] // Move results down. | mov [BASE-8], RB | mov RB, [BASE+RA+4] | mov [BASE-4], RB | add BASE, 8 | sub RD, 1 | jnz <1 |2: | mov L:RB, SAVE_L | mov L:RB->base, PC |3: | mov RD, NRESULTS | mov RA, INARG_NRES // RA = wanted nresults+1 |4: | cmp RA, RD | jne >6 // More/less results wanted? |5: | sub BASE, 8 | mov L:RB->top, BASE | |->vm_leave_cp: | mov RA, SAVE_CFRAME // Restore previous C frame. | mov L:RB->cframe, RA | xor eax, eax // Ok return status for vm_pcall. | |->vm_leave_unw: | add esp, CFRAME_SPACE | restoreregs | ret | |6: | jb >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | cmp BASE, L:RB->maxstack | ja >8 | mov dword [BASE-4], LJ_TNIL | add BASE, 8 | add RD, 1 | jmp <4 | |7: // Less results wanted. | test RA, RA | jz <5 // But check for LUA_MULTRET+1. | sub RA, RD // Negative result! | lea BASE, [BASE+RA*8] // Correct top. | jmp <5 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | mov L:RB->top, BASE // Save current top held in BASE (yes). | mov NRESULTS, RD // Need to fill only remainder with nil. | mov ARG2, RA // Grow by wanted nresults+1. | mov ARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->top // Need the (realloced) L->top in BASE. | jmp <3 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mov ecx, [esp+4] | mov eax, [esp+8] // Error return status for vm_pcall. | and ecx, CFRAME_RAWMASK | mov esp, ecx | mov L:RB, SAVE_L | mov GL:RB, L:RB->glref | mov dword GL:RB->vmstate, ~LJ_VMST_C | jmp ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | mov ecx, [esp+4] | and ecx, CFRAME_RAWMASK | mov esp, ecx | mov L:RB, SAVE_L | mov RA, -8 // Results start at BASE+RA = BASE-8. | mov RD, 1+1 // Really 1+2 results, incr. later. | mov BASE, L:RB->base | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov PC, [BASE-4] // Fetch PC of previous frame. | mov dword [BASE-4], LJ_TFALSE // Prepend false to error message. | set_vmstate INTERP | jmp ->vm_returnc // Increments RD/NRESULTS and returns. | |->vm_returnp: | test PC, FRAME_P | jz ->cont_dispatch | | // Return from pcall or xpcall fast func. | and PC, -8 | sub BASE, PC // Restore caller base. | lea RA, [RA+PC-8] // Rebase RA and prepend one result. | mov PC, [BASE-4] // Fetch PC of previous frame. | // Prepending may overwrite the pcall frame, so do it at the end. | mov dword [BASE+RA+4], LJ_TTRUE // Prepend true to results. | jmp ->vm_returnc // Increments RD/NRESULTS and returns. | |//-- Grow stack on-demand ----------------------------------------------- | |->gate_c_growstack: // Grow stack for C function. | mov ARG2, LUA_MINSTACK | jmp >1 | |->gate_lv_growstack: // Grow stack for vararg Lua function. | sub RC, 8 | mov BASE, RA | mov RA, KBASE | mov PC, PROTO:RB->bc | mov L:RB, SAVE_L | |->gate_lf_growstack: // Grow stack for fixarg Lua function. | // BASE = new base, RA = requested top, RC = top (offset +4 bytes) | // RB = L, PC = first PC of called function (or anything if C function) | sub RC, 4 // Adjust top. | sub RA, BASE | shr RA, 3 // n = pt->framesize - L->top | add PC, 4 // Must point after first instruction. | mov L:RB->base, BASE | mov L:RB->top, RC | mov SAVE_PC, PC | mov ARG2, RA | mov ARG1, L:RB |1: | // L:RB = L, L->base = new base, L->top = top | // SAVE_PC = initial PC+1 (undefined for C functions) | call extern lj_state_growstack // (lua_State *L, int n) | mov RA, L:RB->base | mov RC, L:RB->top | mov LFUNC:RB, [RA-8] | mov PC, [RA-4] | sub RC, RA | shr RC, 3 | add NARGS:RC, 1 | // RA = new base, RB = LFUNC, RC = nargs+1, (BASE = invalid), PC restored. | jmp aword LFUNC:RB->gate // Just retry call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, StkId base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mov PC, FRAME_C | sub esp, CFRAME_SPACE | xor RD, RD | mov L:RB, SAVE_L | lea KBASE, [esp+CFRAME_RESUME] | mov RA, INARG_BASE | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov L:RB->cframe, KBASE | mov SAVE_CFRAME, RD // Caveat: overlaps INARG_BASE! | mov SAVE_PC, RD // Any value outside of bytecode is ok. | cmp byte L:RB->status, RDL | je >3 // Initial resume (like a call). | | // Resume after yield (like a return). | set_vmstate INTERP | mov byte L:RB->status, RDL | mov BASE, L:RB->base | mov RD, L:RB->top | sub RD, RA | shr RD, 3 | add RD, 1 // RD = nresults+1 | sub RA, BASE // RA = resultofs | mov PC, [BASE-4] | mov NRESULTS, RD | test PC, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, StkId base, int nres1, ptrdiff_t ef) | saveregs | mov PC, FRAME_CP | jmp >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, StkId base, int nres1) | saveregs | mov PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | sub esp, CFRAME_SPACE | mov L:RB, SAVE_L | mov RA, INARG_BASE | |2: // Entry point for vm_cpcall below (RA = base, RB = L, PC = ftype). | mov KBASE, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASE // Caveat: overlaps INARG_BASE! | mov SAVE_PC, esp // Any value outside of bytecode is ok. | mov L:RB->cframe, esp | | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | |3: // Entry point for vm_resume above (RA = base, RB = L, PC = ftype). | set_vmstate INTERP | mov BASE, L:RB->base // BASE = old base (used in vmeta_call). | add PC, RA | sub PC, BASE // PC = frame delta + frame type | | mov RC, L:RB->top | sub RC, RA | shr NARGS:RC, 3 | add NARGS:RC, 1 // RC = nargs+1 | | mov LFUNC:RB, [RA-8] | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call // Ensure KBASE defined and != BASE. | jmp aword LFUNC:RB->gate | // RA = new base, RB = LFUNC/CFUNC, RC = nargs+1. | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CPFunction cp, lua_CFunction func, void *ud) | saveregs | sub esp, CFRAME_SPACE | | mov L:RB, SAVE_L | mov RC, INARG_CP_UD | mov RA, INARG_CP_FUNC | mov BASE, INARG_CP_CALL | mov SAVE_PC, esp // Any value outside of bytecode is ok. | | // Caveat: INARG_P_* and INARG_CP_* overlap! | mov KBASE, L:RB->stack // Compute -savestack(L, L->top). | sub KBASE, L:RB->top | mov INARG_P_ERRF, 0 // No error function. | mov INARG_NRES, KBASE // Neg. delta means cframe w/o frame. | // Handler may change cframe_nres(L->cframe) or cframe_errfunc(L->cframe). | | mov ARG3, RC | mov ARG2, RA | mov ARG1, L:RB | | mov KBASE, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASE // Caveat: overlaps INARG_CP_CALL! | mov L:RB->cframe, esp | | call BASE // (lua_State *L, lua_CFunction func, void *ud) | // StkId (new base) or NULL returned in eax (RC). | test RC, RC | jz ->vm_leave_cp // No base? Just remove C frame. | mov RA, RC | mov PC, FRAME_CP | jmp <2 // Else continue with the call. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultofs, RD = nresults+1 (also in NRESULTS) | add RA, BASE | and PC, -8 | mov RB, BASE | sub BASE, PC // Restore caller BASE. | mov dword [RA+RD*8-4], LJ_TNIL // Ensure one valid arg. | mov RC, RA // ... in [RC] | mov PC, [RB-12] // Restore PC from [cont|PC]. | mov LFUNC:KBASE, [BASE-8] | mov PROTO:KBASE, LFUNC:KBASE->pt | mov KBASE, PROTO:KBASE->k | // BASE = base, RC = result, RB = meta base | jmp dword [RB-16] // Jump to continuation. | |->cont_cat: // BASE = base, RC = result, RB = mbase | movzx RA, PC_RB | sub RB, 16 | lea RA, [BASE+RA*8] | sub RA, RB | je ->cont_ra | neg RA | shr RA, 3 | mov ARG3, RA | mov RA, [RC+4] | mov RC, [RC] | mov [RB+4], RA | mov [RB], RC | mov ARG2, RB | jmp ->BC_CAT_Z | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets: | mov ARG5, RC // RC = GCstr * | mov ARG6, LJ_TSTR | lea RC, ARG5 // Store temp. TValue in ARG5/ARG6. | cmp PC_OP, BC_GGET | jne >1 | lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RA], TAB:RB // RB = GCtab * | mov dword [RA+4], LJ_TTAB | mov RB, RA | jmp >2 | |->vmeta_tgetb: | movzx RC, PC_RC // Ugly, cannot fild from a byte. | mov ARG4, RC | fild ARG4 | fstp FPARG5 | lea RC, ARG5 // Store temp. TValue in ARG5/ARG6. | jmp >1 | |->vmeta_tgetv: | movzx RC, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RB, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: | mov ARG2, RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 |->cont_ra: // BASE = base, RC = result | movzx RA, PC_RA | mov RB, [RC+4] | mov RC, [RC] | mov [BASE+RA*8+4], RB | mov [BASE+RA*8], RC | ins_next | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | mov RA, L:RB->top | mov [RA-12], PC // [cont|PC] | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-8] // Guaranteed to be a function here. | mov NARGS:RC, 3 // 2+1 args for func(t, k). | jmp aword LFUNC:RB->gate | |//----------------------------------------------------------------------- | |->vmeta_tsets: | mov ARG5, RC // RC = GCstr * | mov ARG6, LJ_TSTR | lea RC, ARG5 // Store temp. TValue in ARG5/ARG6. | cmp PC_OP, BC_GSET | jne >1 | lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RA], TAB:RB // RB = GCtab * | mov dword [RA+4], LJ_TTAB | mov RB, RA | jmp >2 | |->vmeta_tsetb: | movzx RC, PC_RC // Ugly, cannot fild from a byte. | mov ARG4, RC | fild ARG4 | fstp FPARG5 | lea RC, ARG5 // Store temp. TValue in ARG5/ARG6. | jmp >1 | |->vmeta_tsetv: | movzx RC, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RB, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: | mov ARG2, RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | movzx RA, PC_RA | mov RB, [BASE+RA*8+4] | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA |->cont_nop: // BASE = base, (RC = result) | ins_next | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | mov RA, L:RB->top | mov [RA-12], PC // [cont|PC] | movzx RC, PC_RA | mov RB, [BASE+RC*8+4] // Copy value to third argument. | mov RC, [BASE+RC*8] | mov [RA+20], RB | mov [RA+16], RC | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-8] // Guaranteed to be a function here. | mov NARGS:RC, 4 // 3+1 args for func(t, k, v). | jmp aword LFUNC:RB->gate | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | movzx RB, PC_OP | lea RD, [BASE+RD*8] | lea RA, [BASE+RA*8] | mov ARG4, RB | mov L:RB, SAVE_L | mov ARG3, RD | mov ARG2, RA | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // 0/1 or TValue * (metamethod) returned in eax (RC). |3: | mov BASE, L:RB->base | cmp RC, 1 | ja ->vmeta_binop |4: | lea PC, [PC+4] | jb >6 |5: | movzx RD, PC_RD | branchPC RD |6: | ins_next | |->cont_condt: // BASE = base, RC = result | add PC, 4 | cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is true. | jb <5 | jmp <6 | |->cont_condf: // BASE = base, RC = result | cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is false. | jmp <4 | |->vmeta_equal: | mov ARG4, RB | mov L:RB, SAVE_L | sub PC, 4 | mov ARG3, RD | mov ARG2, RA | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // 0/1 or TValue * (metamethod) returned in eax (RC). | jmp <3 | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vn: | lea RC, [KBASE+RC*8] | jmp >1 | |->vmeta_arith_nv: | lea RC, [KBASE+RC*8] | lea RB, [BASE+RB*8] | xchg RB, RC | jmp >2 | |->vmeta_unm: | lea RC, [BASE+RD*8] | mov RB, RC | jmp >2 | |->vmeta_arith_vv: | lea RC, [BASE+RC*8] |1: | lea RB, [BASE+RB*8] |2: | lea RA, [BASE+RA*8] | mov ARG3, RB | mov L:RB, SAVE_L | mov ARG4, RC | movzx RC, PC_OP | mov ARG2, RA | mov ARG5, RC | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = base, RC = new base, stack = cont/func/o1/o2 | mov RA, RC | sub RC, BASE | mov [RA-12], PC // [cont|PC] | lea PC, [RC+FRAME_CONT] | mov LFUNC:RB, [RA-8] | mov NARGS:RC, 3 // 2+1 args for func(o1, o2). | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call | jmp aword LFUNC:RB->gate | |->vmeta_len: | lea RD, [BASE+RD*8] | mov L:RB, SAVE_L | mov ARG2, RD | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_len // (lua_State *L, TValue *o) | // TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | jmp ->vmeta_binop // Binop call for compatibility. | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // RA = new base, RC = nargs+1, BASE = old base, PC = return | mov ARG4, RA // Save RA, RC for us. | mov ARG5, NARGS:RC | sub RA, 8 | lea RC, [RA+NARGS:RC*8] | mov L:RB, SAVE_L | mov ARG2, RA | mov ARG3, RC | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE // This is the callers base! | call extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | mov BASE, L:RB->base | mov RA, ARG4 | mov NARGS:RC, ARG5 | mov LFUNC:RB, [RA-8] | add NARGS:RC, 1 | // This is fragile. L->base must not move, KBASE must always be defined. | cmp KBASE, BASE // Continue with CALLT if flag set. | je ->BC_CALLT_Z | jmp aword LFUNC:RB->gate // Otherwise call resolved metamethod. | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mov L:RB, SAVE_L | mov ARG2, RA | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_for // (lua_State *L, StkId base) | mov BASE, L:RB->base | mov RC, [PC-4] | movzx RA, RCH | movzx OP, RCL | shr RC, 16 | jmp aword [DISPATCH+OP*4+GG_DISP_STATIC*4] // Retry FORI or JFORI. | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmp NARGS:RC, 1+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmp NARGS:RC, 2+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_n, name | .ffunc_1 name | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | fld qword [RA] |.endmacro | |.macro .ffunc_n, name, op | .ffunc_1 name | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | op | fld qword [RA] |.endmacro | |.macro .ffunc_nn, name | .ffunc_2 name | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | cmp dword [RA+12], LJ_TISNUM; ja ->fff_fallback | fld qword [RA] | fld qword [RA+8] |.endmacro | |.macro .ffunc_nnr, name | .ffunc_2 name | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | cmp dword [RA+12], LJ_TISNUM; ja ->fff_fallback | fld qword [RA+8] | fld qword [RA] |.endmacro | |// Inlined GC threshold check. Caveat: uses label 1. |.macro ffgccheck | mov RB, [DISPATCH+DISPATCH_GL(gc.total)] | cmp RB, [DISPATCH+DISPATCH_GL(gc.threshold)] | jb >1 | call ->fff_gcstep |1: |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | mov RB, [RA+4] | cmp RB, LJ_TISTRUECOND; jae ->fff_fallback | mov NRESULTS, RD | mov [RA-4], RB | mov RB, [RA] | mov [RA-8], RB | sub RD, 2 | jz >2 | mov ARG1, RA |1: | add RA, 8 | mov RB, [RA+4] | mov [RA-4], RB | mov RB, [RA] | mov [RA-8], RB | sub RD, 1 | jnz <1 | mov RA, ARG1 |2: | mov RD, NRESULTS | jmp ->fff_res_ | |.ffunc_1 type | mov RB, [RA+4] | mov RC, ~LJ_TNUMX | not RB | cmp RC, RB ||if (cmov) { | cmova RC, RB ||} else { | jbe >1; mov RC, RB; 1: ||} | mov CFUNC:RB, [RA-8] | mov STR:RC, [CFUNC:RB+RC*8+((char *)(&((GCfuncC *)0)->upvalue))] | mov dword [RA-4], LJ_TSTR | mov [RA-8], STR:RC | jmp ->fff_res1 | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | mov RB, [RA+4] | cmp RB, LJ_TTAB; jne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | mov TAB:RB, [RA] | mov TAB:RB, TAB:RB->metatable |2: | test TAB:RB, TAB:RB | mov dword [RA-4], LJ_TNIL | jz ->fff_res1 | mov CFUNC:RC, [RA-8] | mov STR:RC, [DISPATCH+DISPATCH_GL(mmname)+4*MM_metatable] | mov dword [RA-4], LJ_TTAB // Store metatable as default result. | mov [RA-8], TAB:RB | mov ARG1, RA // Save result pointer. | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | add NODE:RA, TAB:RB->node |3: // Rearranged logic, because we expect _not_ to find the key. | cmp dword NODE:RA->key.it, LJ_TSTR | jne >4 | cmp dword NODE:RA->key.gcr, STR:RC | je >5 |4: | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <3 | jmp ->fff_res1 // Not found, keep default result. |5: | mov RB, [RA+4] | cmp RB, LJ_TNIL; je ->fff_res1 // Dito for nil value. | mov RC, [RA] | mov RA, ARG1 // Restore result pointer. | mov [RA-4], RB // Return value of mt.__metatable. | mov [RA-8], RC | jmp ->fff_res1 | |6: | cmp RB, LJ_TUDATA; je <1 | cmp RB, LJ_TISNUM; ja >7 | mov RB, LJ_TNUMX |7: | not RB | mov TAB:RB, [DISPATCH+RB*4+DISPATCH_GL(basemt)] | jmp <2 | |.ffunc_2 setmetatable | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | // Fast path: no mt for table yet and not clearing the mt. | mov TAB:RB, [RA] | cmp dword TAB:RB->metatable, 0; jne ->fff_fallback | cmp dword [RA+12], LJ_TTAB; jne ->fff_fallback | mov TAB:RC, [RA+8] | mov TAB:RB->metatable, TAB:RC | mov dword [RA-4], LJ_TTAB // Return original table. | mov [RA-8], TAB:RB | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jz >1 | // Possible write barrier. Table is black, but skip iswhite(mt) check. | barrierback TAB:RB, RC |1: | jmp ->fff_res1 | |.ffunc_2 rawget | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | mov TAB:RC, [RA] | mov L:RB, SAVE_L | mov ARG2, TAB:RC | mov ARG1, L:RB | mov RB, RA | mov ARG4, BASE // Save BASE and RA. | add RA, 8 | mov ARG3, RA | call extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // cTValue * returned in eax (RC). | mov RA, RB | mov BASE, ARG4 | mov RB, [RC] // Copy table slot. | mov RC, [RC+4] | mov [RA-8], RB | mov [RA-4], RC | jmp ->fff_res1 | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmp NARGS:RC, 1+1; jne ->fff_fallback // Exactly one argument. | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | fld qword [RA] | jmp ->fff_resn | |.ffunc_1 tostring | // Only handles the string or number case inline. | cmp dword [RA+4], LJ_TSTR; jne >3 | // A __tostring method in the string base metatable is ignored. | mov STR:RC, [RA] |2: | mov dword [RA-4], LJ_TSTR | mov [RA-8], STR:RC | jmp ->fff_res1 |3: // Handle numbers inline, unless a number base metatable is present. | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | cmp dword [DISPATCH+DISPATCH_GL(basemt)+4*(~LJ_TNUMX)], 0 | jne ->fff_fallback | ffgccheck // Caveat: uses label 1. | mov L:RB, SAVE_L | mov ARG1, L:RB | mov ARG2, RA | mov L:RB->base, RA // Add frame since C call can throw. | mov [RA-4], PC | mov SAVE_PC, PC // Redundant (but a defined value). | mov ARG3, BASE // Save BASE. | call extern lj_str_fromnum // (lua_State *L, lua_Number *np) | // GCstr returned in eax (RC). | mov RA, L:RB->base | mov BASE, ARG3 | jmp <2 | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | je >2 // Missing 2nd arg? |1: | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | mov TAB:RB, [RA] | mov ARG2, TAB:RB | mov L:RB, SAVE_L | mov ARG1, L:RB | mov L:RB->base, RA // Add frame since C call can throw. | mov [RA-4], PC | mov SAVE_PC, PC // Redundant (but a defined value). | mov ARG4, BASE // Save BASE. | add RA, 8 | mov ARG3, RA | call extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Flag returned in eax (RC). | mov RA, L:RB->base | mov BASE, ARG4 | test RC, RC; jz >3 // End of traversal? | mov RB, [RA+8] // Copy key and value to results. | mov RC, [RA+12] | mov [RA-8], RB | mov [RA-4], RC | mov RB, [RA+16] | mov RC, [RA+20] | mov [RA], RB | mov [RA+4], RC |->fff_res2: | mov RD, 1+2 | jmp ->fff_res |2: // Set missing 2nd arg to nil. | mov dword [RA+12], LJ_TNIL | jmp <1 |3: // End of traversal: return nil. | mov dword [RA-4], LJ_TNIL | jmp ->fff_res1 | |.ffunc_1 pairs | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | mov CFUNC:RC, CFUNC:RB->upvalue[0] | mov dword [RA-4], LJ_TFUNC | mov [RA-8], CFUNC:RC | mov dword [RA+12], LJ_TNIL | mov RD, 1+3 | jmp ->fff_res | |.ffunc_1 ipairs_aux | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | cmp dword [RA+12], LJ_TISNUM; ja ->fff_fallback | fld qword [RA+8] | fld1 | faddp st1 | fist ARG2 | fstp qword [RA-8] | mov TAB:RB, [RA] | mov RC, ARG2 | cmp RC, TAB:RB->asize; jae >2 // Not in array part? | shl RC, 3 | add RC, TAB:RB->array |1: | cmp dword [RC+4], LJ_TNIL; je ->fff_res0 | mov RB, [RC] // Copy array slot. | mov RC, [RC+4] | mov [RA], RB | mov [RA+4], RC | jmp ->fff_res2 |2: // Check for empty hash part first. Otherwise call C function. | cmp dword TAB:RB->hmask, 0; je ->fff_res0 | mov ARG1, TAB:RB | mov ARG3, BASE // Save BASE and RA. | mov RB, RA | call extern lj_tab_getinth // (GCtab *t, int32_t key) | // cTValue * or NULL returned in eax (RC). | mov RA, RB | mov BASE, ARG3 | test RC, RC | jnz <1 |->fff_res0: | mov RD, 1+0 | jmp ->fff_res | |.ffunc_1 ipairs | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | mov CFUNC:RC, CFUNC:RB->upvalue[0] | mov dword [RA-4], LJ_TFUNC | mov [RA-8], CFUNC:RC | fldz | fstp qword [RA+8] | mov RD, 1+3 | jmp ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc_1 pcall | mov [RA-4], PC | mov PC, 8+FRAME_PCALL | mov BASE, RA | add RA, 8 | sub NARGS:RC, 1 | mov LFUNC:RB, [RA-8] |1: | test byte [DISPATCH+DISPATCH_GL(hookmask)], HOOK_ACTIVE | jnz >3 // Hook active before pcall? |2: | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call // Ensure KBASE defined and != BASE. | jmp aword LFUNC:RB->gate |3: | add PC, 1 // Use FRAME_PCALLH if hook was active. | jmp <2 | |.ffunc_2 xpcall | cmp dword [RA+12], LJ_TFUNC; jne ->fff_fallback | mov [RA-4], PC | mov RB, [RA+4] // Swap function and traceback. | mov [RA+12], RB | mov dword [RA+4], LJ_TFUNC | mov LFUNC:RB, [RA] | mov PC, [RA+8] | mov [RA+8], LFUNC:RB | mov [RA], PC | mov PC, 2*8+FRAME_PCALL | mov BASE, RA | add RA, 2*8 | sub NARGS:RC, 2 | jmp <1 | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |9: // Need to restore PC for fallback handler. | mov PC, SAVE_PC | jmp ->fff_fallback | |.if resume |.ffunc_1 coroutine_resume | mov L:RB, [RA] |.else |.ffunc coroutine_wrap_aux | mov L:RB, CFUNC:RB->upvalue[0].gcr |.endif | mov [RA-4], PC | mov SAVE_PC, PC | mov ARG1, L:RB |.if resume | cmp dword [RA+4], LJ_TTHREAD; jne <9 |.endif | cmp aword L:RB->cframe, 0; jne <9 | cmp byte L:RB->status, LUA_YIELD; ja <9 | mov PC, L:RB->top | mov ARG2, PC | je >1 // Status != LUA_YIELD (i.e. 0)? | cmp PC, L:RB->base; je <9 // Check for presence of initial func. |1: |.if resume | lea PC, [PC+NARGS:RC*8-16] // Check stack space (-1-thread). |.else | lea PC, [PC+NARGS:RC*8-8] // Check stack space (-1). |.endif | cmp PC, L:RB->maxstack; ja <9 | mov L:RB->top, PC | | mov L:RB, SAVE_L | mov L:RB->base, RA |.if resume | add RA, 8 // Keep resumed thread in stack for GC. |.endif | mov L:RB->top, RA | mov RB, ARG2 |.if resume | lea RA, [RA+NARGS:RC*8-24] // RA = end of source for stack move. |.else | lea RA, [RA+NARGS:RC*8-16] // RA = end of source for stack move. |.endif | sub RA, PC // Relative to PC. | | cmp PC, RB | je >3 |2: // Move args to coroutine. | mov RC, [PC+RA+4] | mov [PC-4], RC | mov RC, [PC+RA] | mov [PC-8], RC | sub PC, 8 | cmp PC, RB | jne <2 |3: | xor RA, RA | mov ARG4, RA | mov ARG3, RA | call ->vm_resume // (lua_State *L, StkId base, 0, 0) | set_vmstate INTERP | | mov L:RB, SAVE_L | mov L:PC, ARG1 // The callee doesn't modify SAVE_L. | mov BASE, L:RB->base | cmp eax, LUA_YIELD | ja >8 |4: | mov RA, L:PC->base | mov KBASE, L:PC->top | mov L:PC->top, RA // Clear coroutine stack. | mov PC, KBASE | sub PC, RA | je >6 // No results? | lea RD, [BASE+PC] | shr PC, 3 | cmp RD, L:RB->maxstack | ja >9 // Need to grow stack? | | mov RB, BASE | sub RB, RA |5: // Move results from coroutine. | mov RD, [RA] | mov [RA+RB], RD | mov RD, [RA+4] | mov [RA+RB+4], RD | add RA, 8 | cmp RA, KBASE | jne <5 |6: |.if resume | lea RD, [PC+2] // nresults+1 = 1 + true + results. | mov dword [BASE-4], LJ_TTRUE // Prepend true to results. |.else | lea RD, [PC+1] // nresults+1 = 1 + results. |.endif |7: | mov PC, SAVE_PC | mov NRESULTS, RD |.if resume | mov RA, -8 |.else | xor RA, RA |.endif | test PC, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | mov dword [BASE-4], LJ_TFALSE // Prepend false to results. | mov RA, L:PC->top | sub RA, 8 | mov L:PC->top, RA // Clear error from coroutine stack. | mov RD, [RA] // Copy error message. | mov [BASE], RD | mov RD, [RA+4] | mov [BASE+4], RD | mov RD, 1+2 // nresults+1 = 1 + false + error. | jmp <7 |.else | mov ARG2, L:PC | mov ARG1, L:RB | call extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) | // Error function does not return. |.endif | |9: // Handle stack expansion on return from yield. | mov L:RA, ARG1 // The callee doesn't modify SAVE_L. | mov L:RA->top, KBASE // Undo coroutine stack clearing. | mov ARG2, PC | mov ARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->base | jmp <4 // Retry the stack move. |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | mov L:RB, SAVE_L | mov [RA-4], PC | test aword L:RB->cframe, CFRAME_CANYIELD | jz ->fff_fallback | mov L:RB->base, RA | lea RC, [RA+NARGS:RC*8-8] | mov L:RB->top, RC | xor eax, eax | mov aword L:RB->cframe, eax | mov al, LUA_YIELD | mov byte L:RB->status, al | jmp ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.ffunc_n math_abs | fabs | // fallthrough |->fff_resn: | fstp qword [RA-8] |->fff_res1: | mov RD, 1+1 |->fff_res: | mov NRESULTS, RD |->fff_res_: | test PC, FRAME_TYPE | jnz >7 |5: | cmp PC_RB, RDL // More results expected? | ja >6 | // BASE and KBASE are assumed to be set for the calling frame. | ins_next | |6: // Fill up results with nil. | mov dword [RA+RD*8-12], LJ_TNIL | add RD, 1 | jmp <5 | |7: // Non-standard return case. | mov BASE, RA | mov RA, -8 // Results start at BASE+RA = BASE-8. | jmp ->vm_return | |.ffunc_n math_floor; call ->vm_floor; jmp ->fff_resn |.ffunc_n math_ceil; call ->vm_ceil; jmp ->fff_resn | |.ffunc_n math_sqrt; fsqrt; jmp ->fff_resn | |.ffunc_n math_log, fldln2; fyl2x; jmp ->fff_resn |.ffunc_n math_log10, fldlg2; fyl2x; jmp ->fff_resn |.ffunc_n math_exp; call ->vm_exp; jmp ->fff_resn | |.ffunc_n math_sin; fsin; jmp ->fff_resn |.ffunc_n math_cos; fcos; jmp ->fff_resn |.ffunc_n math_tan; fptan; fpop; jmp ->fff_resn | |.ffunc_n math_asin | fdup; fmul st0; fld1; fsubrp st1; fsqrt; fpatan | jmp ->fff_resn |.ffunc_n math_acos | fdup; fmul st0; fld1; fsubrp st1; fsqrt; fxch; fpatan | jmp ->fff_resn |.ffunc_n math_atan; fld1; fpatan; jmp ->fff_resn | |.macro math_extern, func |.ffunc_n math_ .. func | mov ARG5, RA | fstp FPARG1 | mov RB, BASE | call extern lj_wrapper_ .. func | mov RA, ARG5 | mov BASE, RB | jmp ->fff_resn |.endmacro | | math_extern sinh | math_extern cosh | math_extern tanh | |->ff_math_deg: |.ffunc_n math_rad; fmul qword CFUNC:RB->upvalue[0]; jmp ->fff_resn | |.ffunc_nn math_atan2; fpatan; jmp ->fff_resn |.ffunc_nnr math_ldexp; fscale; fpop1; jmp ->fff_resn | |.ffunc_1 math_frexp | mov RB, [RA+4] | cmp RB, LJ_TISNUM; ja ->fff_fallback | mov RC, [RA] | mov [RA-4], RB; mov [RA-8], RC | shl RB, 1; cmp RB, 0xffe00000; jae >3 | or RC, RB; jz >3 | mov RC, 1022 | cmp RB, 0x00200000; jb >4 |1: | shr RB, 21; sub RB, RC // Extract and unbias exponent. | mov ARG1, RB; fild ARG1 | mov RB, [RA-4] | and RB, 0x800fffff // Mask off exponent. | or RB, 0x3fe00000 // Put mantissa in range [0.5,1) or 0. | mov [RA-4], RB |2: | fstp qword [RA] | mov RD, 1+2 | jmp ->fff_res |3: // Return +-0, +-Inf, NaN unmodified and an exponent of 0. | fldz; jmp <2 |4: // Handle denormals by multiplying with 2^54 and adjusting the bias. | fld qword [RA] | mov ARG1, 0x5a800000; fmul ARG1 // x = x*2^54 | fstp qword [RA-8] | mov RB, [RA-4]; mov RC, 1076; shl RB, 1; jmp <1 | |.ffunc_n math_modf | mov RB, [RA+4] | shl RB, 1; cmp RB, 0xffe00000; je >4 // +-Inf? | fdup | call ->vm_trunc | fsub st1, st0 |1: | fstp qword [RA-8]; fstp qword [RA] | mov RC, [RA-4]; mov RB, [RA+4] | xor RC, RB; js >3 // Need to adjust sign? |2: | mov RD, 1+2 | jmp ->fff_res |3: | xor RB, 0x80000000; mov [RA+4], RB; jmp <2 // Flip sign of fraction. |4: | fldz; fxch; jmp <1 // Return +-Inf and +-0. | |.ffunc_nnr math_fmod |1: ; fprem; fnstsw ax; sahf; jp <1 | fpop1 | jmp ->fff_resn | |.ffunc_nn math_pow; call ->vm_pow; jmp ->fff_resn | |.macro math_minmax, name, cmovop, nocmovop |.ffunc_n name | mov RB, 2 |1: | cmp RB, RD; jae ->fff_resn | cmp dword [RA+RB*8-4], LJ_TISNUM; ja >5 | fld qword [RA+RB*8-8] ||if (cmov) { | fucomi st1; cmovop st1; fpop1 ||} else { | push eax | fucom st1; fnstsw ax; test ah, 1; nocmovop >2; fxch; 2: ; fpop | pop eax ||} | add RB, 1 | jmp <1 |.endmacro | | math_minmax math_min, fcmovnbe, jz | math_minmax math_max, fcmovbe, jnz |5: | fpop; jmp ->fff_fallback | |//-- String library ----------------------------------------------------- | |.ffunc_1 string_len | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | mov STR:RB, [RA] | fild dword STR:RB->len | jmp ->fff_resn | |.ffunc string_byte // Only handle the 1-arg case here. | cmp NARGS:RC, 1+1; jne ->fff_fallback | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | mov STR:RB, [RA] | cmp dword STR:RB->len, 1 | jb ->fff_res0 // Return no results for empty string. | movzx RB, byte STR:RB[1] | mov ARG1, RB | fild ARG1 | jmp ->fff_resn | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmp NARGS:RC, 1+1; jne ->fff_fallback // *Exactly* 1 arg. | cmp dword [RA+4], LJ_TISNUM; ja ->fff_fallback | fld qword [RA] | fistp ARG4 | cmp ARG4, 255; ja ->fff_fallback | lea RC, ARG4 // Little-endian. | mov ARG5, RA // Save RA. | mov ARG3, 1 | mov ARG2, RC |->fff_newstr: | mov L:RB, SAVE_L | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_str_new // (lua_State *L, char *str, size_t l) | // GCstr * returned in eax (RC). | mov RA, ARG5 | mov BASE, L:RB->base | mov dword [RA-4], LJ_TSTR | mov [RA-8], STR:RC | jmp ->fff_res1 | |.ffunc string_sub | ffgccheck | mov ARG5, RA // Save RA. | mov ARG4, -1 | cmp NARGS:RC, 1+2; jb ->fff_fallback | jna >1 | cmp dword [RA+20], LJ_TISNUM; ja ->fff_fallback | fld qword [RA+16] | fistp ARG4 |1: | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | cmp dword [RA+12], LJ_TISNUM; ja ->fff_fallback | mov STR:RB, [RA] | mov ARG2, STR:RB | mov RB, STR:RB->len | fld qword [RA+8] | fistp ARG3 | mov RC, ARG4 | cmp RB, RC // len < end? (unsigned compare) | jb >5 |2: | mov RA, ARG3 | test RA, RA // start <= 0? | jle >7 |3: | mov STR:RB, ARG2 | sub RC, RA // start > end? | jl ->fff_emptystr | lea RB, [STR:RB+RA+#STR-1] | add RC, 1 |4: | mov ARG2, RB | mov ARG3, RC | jmp ->fff_newstr | |5: // Negative end or overflow. | jl >6 | lea RC, [RC+RB+1] // end = end+(len+1) | jmp <2 |6: // Overflow. | mov RC, RB // end = len | jmp <2 | |7: // Negative start or underflow. | je >8 | add RA, RB // start = start+(len+1) | add RA, 1 | jg <3 // start > 0? |8: // Underflow. | mov RA, 1 // start = 1 | jmp <3 | |->fff_emptystr: // Range underflow. | xor RC, RC // Zero length. Any ptr in RB is ok. | jmp <4 | |.ffunc_2 string_rep // Only handle the 1-char case inline. | ffgccheck | mov ARG5, RA // Save RA. | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | cmp dword [RA+12], LJ_TISNUM; ja ->fff_fallback | mov STR:RB, [RA] | fld qword [RA+8] | fistp ARG4 | mov RC, ARG4 | test RC, RC | jle ->fff_emptystr // Count <= 0? (or non-int) | cmp dword STR:RB->len, 1 | jb ->fff_emptystr // Zero length string? | jne ->fff_fallback_2 // Fallback for > 1-char strings. | cmp [DISPATCH+DISPATCH_GL(tmpbuf.sz)], RC; jb ->fff_fallback_2 | movzx RA, byte STR:RB[1] | mov RB, [DISPATCH+DISPATCH_GL(tmpbuf.buf)] | mov ARG3, RC | mov ARG2, RB |1: // Fill buffer with char. Yes, this is suboptimal code (do you care?). | mov [RB], RAL | add RB, 1 | sub RC, 1 | jnz <1 | jmp ->fff_newstr | |.ffunc_1 string_reverse | ffgccheck | mov ARG5, RA // Save RA. | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | mov STR:RB, [RA] | mov RC, STR:RB->len | test RC, RC | jz ->fff_emptystr // Zero length string? | cmp [DISPATCH+DISPATCH_GL(tmpbuf.sz)], RC; jb ->fff_fallback_1 | add RB, #STR | mov ARG4, PC // Need another temp register. | mov ARG3, RC | mov PC, [DISPATCH+DISPATCH_GL(tmpbuf.buf)] | mov ARG2, PC |1: | movzx RA, byte [RB] | add RB, 1 | sub RC, 1 | mov [PC+RC], RAL | jnz <1 | mov PC, ARG4 | jmp ->fff_newstr | |.macro ffstring_case, name, lo, hi | .ffunc_1 name | ffgccheck | mov ARG5, RA // Save RA. | cmp dword [RA+4], LJ_TSTR; jne ->fff_fallback | mov STR:RB, [RA] | mov RC, STR:RB->len | cmp [DISPATCH+DISPATCH_GL(tmpbuf.sz)], RC; jb ->fff_fallback_1 | add RB, #STR | mov ARG4, PC // Need another temp register. | mov ARG3, RC | mov PC, [DISPATCH+DISPATCH_GL(tmpbuf.buf)] | mov ARG2, PC | jmp >3 |1: // ASCII case conversion. Yes, this is suboptimal code (do you care?). | movzx RA, byte [RB+RC] | cmp RA, lo | jb >2 | cmp RA, hi | ja >2 | xor RA, 0x20 |2: | mov [PC+RC], RAL |3: | sub RC, 1 | jns <1 | mov PC, ARG4 | jmp ->fff_newstr |.endmacro | |ffstring_case string_lower, 0x41, 0x5a |ffstring_case string_upper, 0x61, 0x7a | |//-- Table library ------------------------------------------------------ | |.ffunc_1 table_getn | cmp dword [RA+4], LJ_TTAB; jne ->fff_fallback | mov TAB:RB, [RA] | mov ARG1, TAB:RB | mov RB, RA // Save RA and BASE. | mov ARG2, BASE | call extern lj_tab_len // (GCtab *t) | // Length of table returned in eax (RC). | mov ARG1, RC | mov RA, RB // Restore RA and BASE. | mov BASE, ARG2 | fild ARG1 | jmp ->fff_resn | |//-- Bit library -------------------------------------------------------- | |.define TOBIT_BIAS, 0x59c00000 // 2^52 + 2^51 (float, not double!). | |.ffunc_n bit_tobit | mov ARG5, TOBIT_BIAS | fadd ARG5 | fstp FPARG1 // 64 bit FP store. | fild ARG1 // 32 bit integer load (s2lfwd ok). | jmp ->fff_resn | |.macro .ffunc_bit, name | .ffunc_n name | mov ARG5, TOBIT_BIAS | fadd ARG5 | fstp FPARG1 | mov RB, ARG1 |.endmacro | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | mov NRESULTS, NARGS:RC // Save for fallback. | lea RC, [RA+NARGS:RC*8-16] |1: | cmp RC, RA | jbe ->fff_resbit | cmp dword [RC+4], LJ_TISNUM; ja ->fff_fallback_bit_op | fld qword [RC] | fadd ARG5 | fstp FPARG1 | ins RB, ARG1 | sub RC, 8 | jmp <1 |.endmacro | |.ffunc_bit_op bit_band, and |.ffunc_bit_op bit_bor, or |.ffunc_bit_op bit_bxor, xor | |.ffunc_bit bit_bswap | bswap RB | jmp ->fff_resbit | |.ffunc_bit bit_bnot | not RB |->fff_resbit: | mov ARG1, RB | fild ARG1 | jmp ->fff_resn | |->fff_fallback_bit_op: | mov NARGS:RC, NRESULTS // Restore for fallback | jmp ->fff_fallback | |.macro .ffunc_bit_sh, name, ins | .ffunc_nn name | mov ARG5, TOBIT_BIAS | fadd ARG5 | fstp FPARG3 | fadd ARG5 | fstp FPARG1 | mov RC, RA // Assumes RA is ecx. | mov RA, ARG3 | mov RB, ARG1 | ins RB, cl | mov RA, RC | jmp ->fff_resbit |.endmacro | |.ffunc_bit_sh bit_lshift, shl |.ffunc_bit_sh bit_rshift, shr |.ffunc_bit_sh bit_arshift, sar |.ffunc_bit_sh bit_rol, rol |.ffunc_bit_sh bit_ror, ror | |//----------------------------------------------------------------------- | |->fff_fallback_2: | mov NARGS:RC, 1+2 // Other args are ignored, anyway. | jmp ->fff_fallback |->fff_fallback_1: | mov NARGS:RC, 1+1 // Other args are ignored, anyway. |->fff_fallback: // Call fast function fallback handler. | // RA = new base, RC = nargs+1 | mov L:RB, SAVE_L | sub BASE, RA | mov [RA-4], PC | mov SAVE_PC, PC // Redundant (but a defined value). | mov ARG3, BASE // Save old BASE (relative). | mov L:RB->base, RA | lea RC, [RA+NARGS:RC*8-8] | mov ARG1, L:RB | lea BASE, [RC+8*LUA_MINSTACK] // Ensure enough space for handler. | mov L:RB->top, RC | mov CFUNC:RA, [RA-8] | cmp BASE, L:RB->maxstack | ja >5 // Need to grow stack. | call aword CFUNC:RA->f // (lua_State *L) | // Either throws an error or recovers and returns 0 or NRESULTS (+1). | test RC, RC; jnz >3 |1: // Returned 0: retry fast path. | mov RA, L:RB->base | mov RC, L:RB->top | sub RC, RA | shr RC, 3 | add NARGS:RC, 1 | mov LFUNC:RB, [RA-8] | mov BASE, ARG3 // Restore old BASE. | add BASE, RA | cmp [RA-4], PC; jne >2 // Callable modified by handler? | jmp aword LFUNC:RB->gate // Retry the call. | |2: // Run modified callable. | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call | jmp aword LFUNC:RB->gate // Retry the call. | |3: // Returned NRESULTS (already in RC/RD). | mov RA, L:RB->base | mov BASE, ARG3 // Restore old BASE. | add BASE, RA | jmp ->fff_res | |5: // Grow stack for fallback handler. | mov ARG2, LUA_MINSTACK | call extern lj_state_growstack // (lua_State *L, int n) | jmp <1 // Dumb retry (goes through ff first). | |->fff_gcstep: // Call GC step function. | // RA = new base, RC = nargs+1 | pop RB // Must keep stack at same level. | mov ARG3, RB // Save return address | mov L:RB, SAVE_L | sub BASE, RA | mov ARG2, BASE // Save old BASE (relative). | mov [RA-4], PC | mov SAVE_PC, PC // Redundant (but a defined value). | mov L:RB->base, RA | lea RC, [RA+NARGS:RC*8-8] | mov ARG1, L:RB | mov L:RB->top, RC | call extern lj_gc_step // (lua_State *L) | mov RA, L:RB->base | mov RC, L:RB->top | sub RC, RA | shr RC, 3 | add NARGS:RC, 1 | mov PC, [RA-4] | mov BASE, ARG2 // Restore old BASE. | add BASE, RA | mov RB, ARG3 | push RB // Restore return address. | mov LFUNC:RB, [RA-8] | ret | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. #if LJ_HASJIT | movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_VMEVENT // No recording while in vmevent. | jnz >5 | // Decrement the hookcount for consistency, but always do the call. | test RDL, HOOK_ACTIVE | jnz >1 | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >1 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jmp >1 #endif | |->vm_hook: // Dispatch target with enabled hooks. | movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_ACTIVE // Hook already active? | jnz >5 | | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >5 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jz >1 | test RDL, LUA_MASKLINE | jz >5 |1: | mov L:RB, SAVE_L | mov RD, NRESULTS // Dynamic top for *M instructions. | mov ARG3, RD | mov L:RB->base, BASE | mov ARG2, PC | mov ARG1, L:RB | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | call extern lj_dispatch_ins // (lua_State *L, BCIns *pc, int nres) |4: | mov BASE, L:RB->base | movzx RA, PC_RA |5: | movzx OP, PC_OP | movzx RD, PC_RD | jmp aword [DISPATCH+OP*4+GG_DISP_STATIC*4] // Re-dispatch to static ins. | |->vm_hotloop: // Hot loop counter underflow. #if LJ_HASJIT | mov L:RB, SAVE_L | lea RA, [DISPATCH+GG_DISP2J] | mov ARG2, PC | mov ARG1, RA | mov [DISPATCH+DISPATCH_J(L)], L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_trace_hot // (jit_State *J, const BCIns *pc) | jmp <4 #endif | |->vm_hotcall: // Hot call counter underflow. #if LJ_HASJIT | mov L:RB, SAVE_L | lea RA, [DISPATCH+GG_DISP2J] | mov ARG2, PC | mov ARG1, RA | mov [DISPATCH+DISPATCH_J(L)], L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_trace_hot // (jit_State *J, const BCIns *pc) | mov BASE, L:RB->base | // Dispatch the first instruction and optionally record it. | ins_next #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |// Called from an exit stub with the exit number on the stack. |// The 16 bit exit number is stored with two (sign-extended) push imm8. |->vm_exit_handler: #if LJ_HASJIT | push ebp; lea ebp, [esp+12]; push ebp | push ebx; push edx; push ecx; push eax | movzx RC, byte [ebp-4] // Reconstruct exit number. | mov RCH, byte [ebp-8] | mov [ebp-4], edi; mov [ebp-8], esi | // Caveat: DISPATCH is ebx. | mov DISPATCH, [ebp] | mov RA, [DISPATCH+DISPATCH_GL(vmstate)] // Get trace number. | set_vmstate EXIT | mov [DISPATCH+DISPATCH_J(exitno)], RC | mov [DISPATCH+DISPATCH_J(parent)], RA | sub esp, 8*8+16 // Room for SSE regs + args. | | // Must not access SSE regs if SSE2 is not present. | test dword [DISPATCH+DISPATCH_J(flags)], JIT_F_SSE2 | jz >1 | movsd qword [ebp-40], xmm7; movsd qword [ebp-48], xmm6 | movsd qword [ebp-56], xmm5; movsd qword [ebp-64], xmm4 | movsd qword [ebp-72], xmm3; movsd qword [ebp-80], xmm2 | movsd qword [ebp-88], xmm1; movsd qword [ebp-96], xmm0 |1: | // Caveat: RB is ebp. | mov L:RB, [DISPATCH+DISPATCH_GL(jit_L)] | mov BASE, [DISPATCH+DISPATCH_GL(jit_base)] | mov [DISPATCH+DISPATCH_J(L)], L:RB | lea RC, [esp+16] | mov L:RB->base, BASE | lea RA, [DISPATCH+GG_DISP2J] | mov ARG2, RC | mov ARG1, RA | call extern lj_trace_exit // (jit_State *J, ExitState *ex) | // Interpreter C frame returned in eax. | mov esp, eax // Reposition stack to C frame. | mov BASE, L:RB->base | mov PC, SAVE_PC | mov SAVE_L, L:RB // Needed for on-trace resume/yield. #endif |->vm_exit_interp: #if LJ_HASJIT | mov LFUNC:KBASE, [BASE-8] | mov PROTO:KBASE, LFUNC:KBASE->pt | mov KBASE, PROTO:KBASE->k | mov dword [DISPATCH+DISPATCH_GL(jit_L)], 0 | set_vmstate INTERP | ins_next #endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// FP value rounding. Called by math.floor/math.ceil fast functions |// and from JIT code. Arg/ret on x87 stack. No int/xmm registers modified. |.macro vm_round, mode1, mode2 | fnstcw word [esp+4] // Caveat: overwrites ARG1 and ARG2. | mov [esp+8], eax | mov ax, mode1 | or ax, [esp+4] |.if mode2 ~= 0xffff | and ax, mode2 |.endif | mov [esp+6], ax | fldcw word [esp+6] | frndint | fldcw word [esp+4] | mov eax, [esp+8] | ret |.endmacro | |->vm_floor: | vm_round 0x0400, 0xf7ff | |->vm_ceil: | vm_round 0x0800, 0xfbff | |->vm_trunc: | vm_round 0x0c00, 0xffff | |// FP modulo x%y. Called by BC_MOD* and vm_arith. |// Args/ret on x87 stack (y on top). No xmm registers modified. |// Caveat: needs 3 slots on x87 stack! RC (eax) modified! |->vm_mod: | fld st1 | fdiv st1 | fnstcw word [esp+4] | mov ax, 0x0400 | or ax, [esp+4] | and ax, 0xf7ff | mov [esp+6], ax | fldcw word [esp+6] | frndint | fldcw word [esp+4] | fmulp st1 | fsubp st1 | ret | |// FP exponentiation e^x and 2^x. Called by math.exp fast function and |// from JIT code. Arg/ret on x87 stack. No int/xmm regs modified. |// Caveat: needs 3 slots on x87 stack! |->vm_exp: | fldl2e; fmulp st1 // e^x ==> 2^(x*log2(e)) |->vm_exp2: | fst dword [esp+4] // Caveat: overwrites ARG1. | cmp dword [esp+4], 0x7f800000; je >1 // Special case: e^+Inf = +Inf | cmp dword [esp+4], 0xff800000; je >2 // Special case: e^-Inf = 0 |->vm_exp2raw: // Entry point for vm_pow. Without +-Inf check. | fdup; frndint; fsub st1, st0; fxch // Split into frac/int part. | f2xm1; fld1; faddp st1; fscale; fpop1 // ==> (2^frac-1 +1) << int |1: | ret |2: | fpop; fldz; ret | |// Generic power function x^y. Called by BC_POW, math.pow fast function |// and vm_arith. Args/ret on x87 stack (y on top). No int/xmm regs modified. |// Caveat: needs 3 slots on x87 stack! |->vm_pow: | fist dword [esp+4] // Store/reload int before comparison. | fild dword [esp+4] // Integral exponent used in vm_powi. ||if (cmov) { | fucomip st1 ||} else { | push eax; fucomp st1; fnstsw ax; sahf; pop eax ||} | jnz >8 // Branch for FP exponents. | jp >9 // Branch for NaN exponent. | fpop // Pop y and fallthrough to vm_powi. | |// FP/int power function x^i. Called from JIT code. Arg1/ret on x87 stack. |// Arg2 (int) on C stack. No int/xmm regs modified. |// Caveat: needs 2 slots on x87 stack! |->vm_powi: | push eax | mov eax, [esp+8] | cmp eax, 1; jle >6 // i<=1? | // Now 1 < (unsigned)i <= 0x80000000. |1: // Handle leading zeros. | test eax, 1; jnz >2 | fmul st0 | shr eax, 1 | jmp <1 |2: | shr eax, 1; jz >5 | fdup |3: // Handle trailing bits. | fmul st0 | shr eax, 1; jz >4 | jnc <3 | fmul st1, st0 | jmp <3 |4: | fmulp st1 |5: | pop eax | ret |6: | je <5 // x^1 ==> x | jb >7 | fld1; fdivrp st1 | neg eax | cmp eax, 1; je <5 // x^-1 ==> 1/x | jmp <1 // x^-i ==> (1/x)^i |7: | fpop; fld1 // x^0 ==> 1 | pop eax | ret | |8: // FP/FP power function x^y. | push eax | fst dword [esp+8] | fxch | fst dword [esp+12] | mov eax, [esp+8]; shl eax, 1 | cmp eax, 0xff000000; je >2 // x^+-Inf? | mov eax, [esp+12]; shl eax, 1; je >4 // +-0^y? | cmp eax, 0xff000000; je >4 // +-Inf^y? | pop eax | fyl2x | jmp ->vm_exp2raw | |9: // Handle x^NaN. | fld1 ||if (cmov) { | fucomip st2 ||} else { | push eax; fucomp st2; fnstsw ax; sahf; pop eax ||} | je >1 // 1^NaN ==> 1 | fxch // x^NaN ==> NaN |1: | fpop | ret | |2: // Handle x^+-Inf. | fabs | fld1 ||if (cmov) { | fucomip st1 ||} else { | fucomp st1; fnstsw ax; sahf ||} | je >3 // +-1^+-Inf ==> 1 | fpop; fabs; fldz; mov eax, 0; setc al | ror eax, 1; xor eax, [esp+8]; jns >3 // |x|<>1, x^+-Inf ==> +Inf/0 | fxch |3: | fpop1; fabs; pop eax | ret | |4: // Handle +-0^y or +-Inf^y. | cmp dword [esp+8], 0; jge <3 // y >= 0, x^y ==> |x| | fpop; fpop | test eax, eax; pop eax; jz >5 // y < 0, +-0^y ==> +Inf | fldz // y < 0, +-Inf^y ==> 0 | ret |5: | mov dword [esp+8], 0x7f800000 // Return +Inf. | fld dword [esp+8] | ret | |// Callable from C: double lj_vm_foldfpm(double x, int fpm) |// Computes fpm(x) for extended math functions. ORDER FPM. |->vm_foldfpm: | mov eax, [esp+12] | fld qword [esp+4] | cmp eax, 1; jb ->vm_floor; je ->vm_ceil | cmp eax, 3; jb ->vm_trunc; ja >1 | fsqrt; ret |1: ; cmp eax, 5; jb ->vm_exp; je ->vm_exp2 | cmp eax, 7; je >1; ja >2 | fldln2; fxch; fyl2x; ret |1: ; fld1; fxch; fyl2x; ret |2: ; cmp eax, 9; je >1; ja >2 | fldlg2; fxch; fyl2x; ret |1: ; fsin; ret |2: ; cmp eax, 11; je >1; ja >9 | fcos; ret |1: ; fptan; fpop; ret |9: ; int3 // Bad fpm. | |// Callable from C: double lj_vm_foldarith(double x, double y, int op) |// Compute x op y for basic arithmetic operators (+ - * / % ^ and unary -) |// and basic math functions. ORDER ARITH |->vm_foldarith: | mov eax, [esp+20] | fld qword [esp+4] | fld qword [esp+12] | cmp eax, 1; je >1; ja >2 | faddp st1; ret |1: ; fsubp st1; ret |2: ; cmp eax, 3; je >1; ja >2 | fmulp st1; ret |1: ; fdivp st1; ret |2: ; cmp eax, 5; jb ->vm_mod; je ->vm_pow | cmp eax, 7; je >1; ja >2 | fpop; fchs; ret |1: ; fpop; fabs; ret |2: ; cmp eax, 9; je >1; ja >2 | fpatan; ret |1: ; fxch; fscale; fpop1; ret |2: ; cmp eax, 11; je >1; ja >9 ||if (cmov) { | fucomi st1; fcmovnbe st1; fpop1; ret |1: ; fucomi st1; fcmovbe st1; fpop1; ret ||} else { | fucom st1; fnstsw ax; test ah, 1; jz >2; fxch; 2: ; fpop; ret |1: ; fucom st1; fnstsw ax; test ah, 1; jnz >2; fxch; 2: ; fpop; ret ||} |9: ; int3 // Bad op. | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |// int lj_vm_cpuid(uint32_t f, uint32_t res[4]) |->vm_cpuid: | pushfd | pop edx | mov ecx, edx | xor edx, 0x00200000 // Toggle ID bit in flags. | push edx | popfd | pushfd | pop edx | xor eax, eax // Zero means no features supported. | cmp ecx, edx | jz >1 // No ID toggle means no CPUID support. | mov eax, [esp+4] // Argument 1 is function number. | push edi | push ebx | cpuid | mov edi, [esp+16] // Argument 2 is result area. | mov [edi], eax | mov [edi+4], ebx | mov [edi+8], ecx | mov [edi+12], edx | pop ebx | pop edi |1: | ret | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop, int cmov) { int vk = 0; |// Note: aligning all instructions does not pay off. |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1, RD = src2, JMP with RD = target | ins_AD | checknum RA, ->vmeta_comp | checknum RD, ->vmeta_comp | fld qword [BASE+RA*8] // Reverse order, i.e like cmp D, A. | fld qword [BASE+RD*8] | add PC, 4 | fcomparepp // eax (RD) modified! | // Unordered: all of ZF CF PF set, ordered: PF clear. | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. switch (op) { case BC_ISLT: | jbe >2 break; case BC_ISGE: | ja >2 break; case BC_ISLE: | jb >2 break; case BC_ISGT: | jae >2 break; default: break; /* Shut up GCC. */ } |1: | movzx RD, PC_RD | branchPC RD |2: | ins_next break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | ins_AD // RA = src1, RD = src2, JMP with RD = target | mov RB, [BASE+RD*8+4] | add PC, 4 | cmp RB, LJ_TISNUM; ja >5 | checknum RA, >5 | fld qword [BASE+RA*8] | fld qword [BASE+RD*8] | fcomparepp // eax (RD) modified! iseqne_fp: if (vk) { | jp >2 // Unordered means not equal. | jne >2 } else { | jp >2 // Unordered means not equal. | je >1 } iseqne_end: if (vk) { |1: // EQ: Branch to the target. | movzx RD, PC_RD | branchPC RD |2: // NE: Fallthrough to next instruction. } else { |2: // NE: Branch to the target. | movzx RD, PC_RD | branchPC RD |1: // EQ: Fallthrough to next instruction. } | ins_next | if (op == BC_ISEQV || op == BC_ISNEV) { |5: // Either or both types are not numbers. | checktp RA, RB // Compare types. | jne <2 // Not the same type? | cmp RB, LJ_TISPRI | jae <1 // Same type and primitive type? | | // Same types and not a primitive type. Compare GCobj or pvalue. | mov RA, [BASE+RA*8] | mov RD, [BASE+RD*8] | cmp RA, RD | je <1 // Same GCobjs or pvalues? | cmp RB, LJ_TISTABUD | ja <2 // Different objects and not table/ud? | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | mov TAB:RB, TAB:RA->metatable | test TAB:RB, TAB:RB | jz <2 // No metatable? | test byte TAB:RB->nomm, 1<vmeta_equal // Handle __eq metamethod. } break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | ins_AND // RA = src, RD = str const, JMP with RD = target | add PC, 4 | checkstr RA, >2 | mov RA, [BASE+RA*8] | cmp RA, [KBASE+RD*4] iseqne_test: if (vk) { | jne >2 } else { | je >1 } goto iseqne_end; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | ins_AD // RA = src, RD = num const, JMP with RD = target | add PC, 4 | checknum RA, >2 | fld qword [BASE+RA*8] | fld qword [KBASE+RD*8] | fcomparepp // eax (RD) modified! goto iseqne_fp; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | ins_AND // RA = src, RD = primitive type (~), JMP with RD = target | add PC, 4 | checktp RA, RD goto iseqne_test; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | ins_AD // RA = dst or unused, RD = src, JMP with RD = target | mov RB, [BASE+RD*8+4] | add PC, 4 | cmp RB, LJ_TISTRUECOND if (op == BC_IST || op == BC_ISTC) { | jae >1 } else { | jb >1 } if (op == BC_ISTC || op == BC_ISFC) { | mov [BASE+RA*8+4], RB | mov RB, [BASE+RD*8] | mov [BASE+RA*8], RB } | movzx RD, PC_RD | branchPC RD |1: // Fallthrough to the next instruction. | ins_next break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | ins_AD // RA = dst, RD = src | mov RB, [BASE+RD*8+4] | mov RD, [BASE+RD*8] // Overwrites RD. | mov [BASE+RA*8+4], RB | mov [BASE+RA*8], RD | ins_next_ break; case BC_NOT: | ins_AD // RA = dst, RD = src | xor RB, RB | checktp RD, LJ_TISTRUECOND | adc RB, LJ_TTRUE | mov [BASE+RA*8+4], RB | ins_next break; case BC_UNM: | ins_AD // RA = dst, RD = src | checknum RD, ->vmeta_unm | fld qword [BASE+RD*8] | fchs | fstp qword [BASE+RA*8] | ins_next break; case BC_LEN: | ins_AD // RA = dst, RD = src | checkstr RD, >2 | mov STR:RD, [BASE+RD*8] | fild dword STR:RD->len |1: | fstp qword [BASE+RA*8] | ins_next |2: | checktab RD, ->vmeta_len | mov TAB:RD, [BASE+RD*8] | mov ARG1, TAB:RD | mov RB, BASE // Save BASE. | call extern lj_tab_len // (GCtab *t) | // Length of table returned in eax (RC). | mov ARG1, RC | mov BASE, RB // Restore BASE. | fild ARG1 | movzx RA, PC_RA | jmp <1 break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre, ins | ins_ABC ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | checknum RB, ->vmeta_arith_vn | fld qword [BASE+RB*8] | ins qword [KBASE+RC*8] || break; ||case 1: | checknum RB, ->vmeta_arith_nv | fld qword [KBASE+RC*8] | ins qword [BASE+RB*8] || break; ||default: | checknum RB, ->vmeta_arith_vv | checknum RC, ->vmeta_arith_vv | fld qword [BASE+RB*8] | ins qword [BASE+RC*8] || break; ||} |.endmacro | |.macro ins_arith, ins | ins_arithpre ins | fstp qword [BASE+RA*8] | ins_next |.endmacro | // RA = dst, RB = src1 or num const, RC = src2 or num const case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith fadd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith fsub break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith fmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arith fdiv break; case BC_MODVN: | ins_arithpre fld |->BC_MODVN_Z: | call ->vm_mod | fstp qword [BASE+RA*8] | ins_next break; case BC_MODNV: case BC_MODVV: | ins_arithpre fld | jmp ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. break; case BC_POW: | ins_arithpre fld | call ->vm_pow | fstp qword [BASE+RA*8] | ins_next break; case BC_CAT: | ins_ABC // RA = dst, RB = src_start, RC = src_end | lea RA, [BASE+RC*8] | sub RC, RB | mov ARG2, RA | mov ARG3, RC |->BC_CAT_Z: | mov L:RB, SAVE_L | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jnz ->vmeta_binop | movzx RB, PC_RB // Copy result to Stk[RA] from Stk[RB]. | movzx RA, PC_RA | mov RC, [BASE+RB*8+4] | mov RB, [BASE+RB*8] | mov [BASE+RA*8+4], RC | mov [BASE+RA*8], RB | ins_next break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | ins_AND // RA = dst, RD = str const (~) | mov RD, [KBASE+RD*4] | mov dword [BASE+RA*8+4], LJ_TSTR | mov [BASE+RA*8], RD | ins_next break; case BC_KSHORT: | ins_AD // RA = dst, RD = signed int16 literal | fild PC_RD // Refetch signed RD from instruction. | fstp qword [BASE+RA*8] | ins_next break; case BC_KNUM: | ins_AD // RA = dst, RD = num const | fld qword [KBASE+RD*8] | fstp qword [BASE+RA*8] | ins_next break; case BC_KPRI: | ins_AND // RA = dst, RD = primitive type (~) | mov [BASE+RA*8+4], RD | ins_next break; case BC_KNIL: | ins_AD // RA = dst_start, RD = dst_end | lea RA, [BASE+RA*8+12] | lea RD, [BASE+RD*8+4] | mov RB, LJ_TNIL | mov [RA-8], RB // Sets minimum 2 slots. |1: | mov [RA], RB | add RA, 8 | cmp RA, RD | jbe <1 | ins_next break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | ins_AD // RA = dst, RD = upvalue # | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RD*4+offsetof(GCfuncL, uvptr)] | mov RB, UPVAL:RB->v | mov RD, [RB+4] | mov RB, [RB] | mov [BASE+RA*8+4], RD | mov [BASE+RA*8], RB | ins_next break; case BC_USETV: | ins_AD // RA = upvalue #, RD = src | // Really ugly code due to the lack of a 4th free register. | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | test byte UPVAL:RB->marked, LJ_GC_BLACK // isblack(uv) | jnz >4 |1: | mov RA, [BASE+RD*8] |2: | mov RB, UPVAL:RB->v | mov RD, [BASE+RD*8+4] | mov [RB], RA | mov [RB+4], RD |3: | ins_next | |4: // Upvalue is black. Check if new value is collectable and white. | mov RA, [BASE+RD*8+4] | sub RA, LJ_TISGCV | cmp RA, LJ_TISNUM - LJ_TISGCV // tvisgcv(v) | jbe <1 | mov GCOBJ:RA, [BASE+RD*8] | test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(v) | jz <2 | // Crossed a write barrier. So move the barrier forward. | mov ARG2, UPVAL:RB | mov ARG3, GCOBJ:RA | mov RB, UPVAL:RB->v | mov RD, [BASE+RD*8+4] | mov [RB], GCOBJ:RA | mov [RB+4], RD |->BC_USETV_Z: | mov L:RB, SAVE_L | lea GL:RA, [DISPATCH+GG_DISP2G] | mov L:RB->base, BASE | mov ARG1, GL:RA | call extern lj_gc_barrieruv // (global_State *g, GCobj *o, GCobj *v) | mov BASE, L:RB->base | jmp <3 break; case BC_USETS: | ins_AND // RA = upvalue #, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov GCOBJ:RD, [KBASE+RD*4] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | mov dword [RA+4], LJ_TSTR | mov [RA], GCOBJ:RD | test byte UPVAL:RB->marked, LJ_GC_BLACK // isblack(uv) | jnz >2 |1: | ins_next | |2: // Upvalue is black. Check if string is white. | test byte GCOBJ:RD->gch.marked, LJ_GC_WHITES // iswhite(str) | jz <1 | // Crossed a write barrier. So move the barrier forward. | mov ARG3, GCOBJ:RD | mov ARG2, UPVAL:RB | jmp ->BC_USETV_Z break; case BC_USETN: | ins_AD // RA = upvalue #, RD = num const | mov LFUNC:RB, [BASE-8] | fld qword [KBASE+RD*8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | fstp qword [RA] | ins_next break; case BC_USETP: | ins_AND // RA = upvalue #, RD = primitive type (~) | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | mov [RA+4], RD | ins_next break; case BC_UCLO: | ins_AD // RA = level, RD = target | branchPC RD // Do this first to free RD. | mov L:RB, SAVE_L | cmp dword L:RB->openupval, 0 | je >1 | lea RA, [BASE+RA*8] | mov ARG2, RA | mov ARG1, L:RB | mov L:RB->base, BASE | call extern lj_func_closeuv // (lua_State *L, StkId level) | mov BASE, L:RB->base |1: | ins_next break; case BC_FNEW: | ins_AND // RA = dst, RD = proto const (~) (holding function prototype) | mov LFUNC:RA, [BASE-8] | mov PROTO:RD, [KBASE+RD*4] // Fetch GCproto *. | mov L:RB, SAVE_L | mov ARG3, LFUNC:RA | mov ARG2, PROTO:RD | mov SAVE_PC, PC | mov ARG1, L:RB | mov L:RB->base, BASE | // (lua_State *L, GCproto *pt, GCfuncL *parent) | call extern lj_func_newL_gc | // GCfuncL * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], LFUNC:RC | mov dword [BASE+RA*8+4], LJ_TFUNC | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: | ins_AD // RA = dst, RD = hbits|asize | mov RB, RD | and RD, 0x7ff | shr RB, 11 | cmp RD, 0x7ff // Turn 0x7ff into 0x801. | sete RAL | mov ARG3, RB | add RD, RA | mov L:RB, SAVE_L | add RD, RA | mov ARG2, RD | mov SAVE_PC, PC | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | mov ARG1, L:RB | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov L:RB->base, BASE | jae >2 |1: | call extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], TAB:RC | mov dword [BASE+RA*8+4], LJ_TTAB | ins_next |2: | call extern lj_gc_step_fixtop // (lua_State *L) | mov ARG1, L:RB // Args owned by callee. Set it again. | jmp <1 break; case BC_TDUP: | ins_AND // RA = dst, RD = table const (~) (holding template table) | mov TAB:RD, [KBASE+RD*4] | mov L:RB, SAVE_L | mov ARG2, TAB:RD | mov ARG1, L:RB | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | mov SAVE_PC, PC | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov L:RB->base, BASE | jae >3 |2: | call extern lj_tab_dup // (lua_State *L, Table *kt) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], TAB:RC | mov dword [BASE+RA*8+4], LJ_TTAB | ins_next |3: | call extern lj_gc_step_fixtop // (lua_State *L) | mov ARG1, L:RB // Args owned by callee. Set it again. | jmp <2 break; case BC_GGET: | ins_AND // RA = dst, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*4] | jmp ->BC_TGETS_Z break; case BC_GSET: | ins_AND // RA = src, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*4] | jmp ->BC_TSETS_Z break; case BC_TGETV: | ins_ABC // RA = dst, RB = table, RC = key | checktab RB, ->vmeta_tgetv | mov TAB:RB, [BASE+RB*8] | | // Integer key? Convert number to int and back and compare. | checknum RC, >5 | fld qword [BASE+RC*8] | fist ARG1 | fild ARG1 | fcomparepp // eax (RC) modified! | mov RC, ARG1 | jne ->vmeta_tgetv // Generic numeric key? Use fallback. | cmp RC, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tgetv // Not in array part? Use fallback. | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >2 |1: | mov RB, [RC] // Get array slot. | mov RC, [RC+4] | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC | ins_next | |2: // Check for __index if table value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tgetv // 'no __index' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 | |5: // String key? | checkstr RC, ->vmeta_tgetv | mov STR:RC, [BASE+RC*8] | jmp ->BC_TGETS_Z break; case BC_TGETS: | ins_ABC // RA = dst, RB = table, RC = str const (~) | not RC | mov STR:RC, [KBASE+RC*4] | checktab RB, ->vmeta_tgets | mov TAB:RB, [BASE+RB*8] |->BC_TGETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA. | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | add NODE:RA, TAB:RB->node |1: | cmp dword NODE:RA->key.it, LJ_TSTR | jne >4 | cmp dword NODE:RA->key.gcr, STR:RC | jne >4 | // Ok, key found. Assumes: offsetof(Node, val) == 0 | cmp dword [RA+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >5 // Key found, but nil value? | movzx RC, PC_RA | mov RB, [RA] // Get node value. | mov RA, [RA+4] | mov [BASE+RC*8], RB |2: | mov [BASE+RC*8+4], RA | ins_next | |3: | movzx RC, PC_RA | mov RA, LJ_TNIL | jmp <2 | |4: // Follow hash chain. | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <1 | // End of hash chain: key not found, nil result. | |5: // Check for __index if table value is nil. | mov TAB:RA, TAB:RB->metatable | test TAB:RA, TAB:RA | jz <3 // No metatable: done. | test byte TAB:RA->nomm, 1<vmeta_tgets // Caveat: preserve STR:RC. break; case BC_TGETB: | ins_ABC // RA = dst, RB = table, RC = byte literal | checktab RB, ->vmeta_tgetb | mov TAB:RB, [BASE+RB*8] | cmp RC, TAB:RB->asize | jae ->vmeta_tgetb | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >2 |1: | mov RB, [RC] // Get array slot. | mov RC, [RC+4] | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC | ins_next | |2: // Check for __index if table value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tgetb // 'no __index' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 break; case BC_TSETV: | ins_ABC // RA = src, RB = table, RC = key | checktab RB, ->vmeta_tsetv | mov TAB:RB, [BASE+RB*8] | | // Integer key? Convert number to int and back and compare. | checknum RC, >5 | fld qword [BASE+RC*8] | fist ARG1 | fild ARG1 | fcomparepp // eax (RC) modified! | mov RC, ARG1 | jne ->vmeta_tsetv // Generic numeric key? Use fallback. | cmp RC, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tsetv | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | mov RB, [BASE+RA*8+4] // Set array slot. | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA | ins_next | |3: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsetv // 'no __newindex' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 | |5: // String key? | checkstr RC, ->vmeta_tsetv | mov STR:RC, [BASE+RC*8] | jmp ->BC_TSETS_Z | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RA | movzx RA, PC_RA // Restore RA. | jmp <2 break; case BC_TSETS: | ins_ABC // RA = src, RB = table, RC = str const (~) | not RC | mov STR:RC, [KBASE+RC*4] | checktab RB, ->vmeta_tsets | mov TAB:RB, [BASE+RB*8] |->BC_TSETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA. | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | mov byte TAB:RB->nomm, 0 // Clear metamethod cache. | add NODE:RA, TAB:RB->node |1: | cmp dword NODE:RA->key.it, LJ_TSTR | jne >5 | cmp dword NODE:RA->key.gcr, STR:RC | jne >5 | // Ok, key found. Assumes: offsetof(Node, val) == 0 | cmp dword [RA+4], LJ_TNIL | je >4 // Previous value is nil? |2: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |3: | movzx RC, PC_RA | mov RB, [BASE+RC*8+4] // Set node value. | mov RC, [BASE+RC*8] | mov [RA+4], RB | mov [RA], RC | ins_next | |4: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <2 | mov ARG1, RA // Save RA. | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. | mov RA, ARG1 // Restore RA. | jmp <2 | |5: // Follow hash chain. | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | mov TAB:RA, TAB:RB->metatable | test TAB:RA, TAB:RA | jz >6 // No metatable: continue. | test byte TAB:RA->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | mov ARG5, STR:RC | mov ARG6, LJ_TSTR | lea RC, ARG5 // Store temp. TValue in ARG5/ARG6. | mov ARG4, TAB:RB // Save TAB:RB for us. | mov ARG2, TAB:RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Handles write barrier for the new key. TValue * returned in eax (RC). | mov BASE, L:RB->base | mov TAB:RB, ARG4 // Need TAB:RB for barrier. | mov RA, eax | jmp <2 // Must check write barrier for value. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RC // Destroys STR:RC. | jmp <3 break; case BC_TSETB: | ins_ABC // RA = src, RB = table, RC = byte literal | checktab RB, ->vmeta_tsetb | mov TAB:RB, [BASE+RB*8] | cmp RC, TAB:RB->asize | jae ->vmeta_tsetb | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | mov RB, [BASE+RA*8+4] // Set array slot. | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA | ins_next | |3: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsetb // 'no __newindex' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RA | movzx RA, PC_RA // Restore RA. | jmp <2 break; case BC_TSETM: | ins_AD // RA = base (table at base-1), RD = num const (start index) | mov ARG5, KBASE // Need one more free register. | fld qword [KBASE+RD*8] | fistp ARG4 // Const is guaranteed to be an int. |1: | lea RA, [BASE+RA*8] | mov TAB:RB, [RA-8] // Guaranteed to be a table. | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | mov RD, NRESULTS | mov KBASE, ARG4 | sub RD, 1 | jz >4 // Nothing to copy? | add RD, KBASE // Compute needed size. | cmp RD, TAB:RB->asize | jae >5 // Does not fit into array part? | sub RD, KBASE | shl KBASE, 3 | add KBASE, TAB:RB->array |3: // Copy result slots to table. | mov RB, [RA] | mov [KBASE], RB | mov RB, [RA+4] | add RA, 8 | mov [KBASE+4], RB | add KBASE, 8 | sub RD, 1 | jnz <3 |4: | mov KBASE, ARG5 | ins_next | |5: // Need to resize array part. | mov ARG2, TAB:RB | mov L:RB, SAVE_L | mov ARG3, RD | mov ARG1, L:RB | mov SAVE_PC, PC | mov L:RB->base, BASE | call extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | mov BASE, L:RB->base | movzx RA, PC_RA // Restore RA. | jmp <1 // Retry. | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:RB, RD | jmp <2 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALL: case BC_CALLM: | ins_A_C // RA = base, (RB = nresults+1,) RC = nargs+1 | extra_nargs if (op == BC_CALLM) { | add NARGS:RC, NRESULTS } | lea RA, [BASE+RA*8+8] | mov LFUNC:RB, [RA-8] | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call | jmp aword LFUNC:RB->gate break; case BC_CALLMT: | ins_AD // RA = base, RD = extra_nargs | add NARGS:RD, NRESULTS | // Fall through. Assumes BC_CALLMT follows and ins_AD is a no-op. break; case BC_CALLT: | ins_AD // RA = base, RD = nargs+1 | lea RA, [BASE+RA*8+8] | mov KBASE, BASE // Use KBASE for move + vmeta_call hint. | mov LFUNC:RB, [RA-8] | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call |->BC_CALLT_Z: | mov PC, [BASE-4] | test PC, FRAME_TYPE | jnz >7 |1: | mov [BASE-8], LFUNC:RB // Copy function down, reloaded below. | mov NRESULTS, NARGS:RD | sub NARGS:RD, 1 | jz >3 |2: | mov RB, [RA] // Move args down. | mov [KBASE], RB | mov RB, [RA+4] | mov [KBASE+4], RB | add KBASE, 8 | add RA, 8 | sub NARGS:RD, 1 | jnz <2 | | mov LFUNC:RB, [BASE-8] |3: | mov RA, BASE // BASE is ignored, except when ... | cmp byte LFUNC:RB->ffid, 1 // (> FF_C) Calling a fast function? | ja >5 |4: | mov NARGS:RD, NRESULTS | jmp aword LFUNC:RB->gate | |5: // Tailcall to a fast function. | test PC, FRAME_TYPE // Lua frame below? | jnz <4 | movzx RD, PC_RA // Need to prepare BASE/KBASE. | not RD | lea BASE, [BASE+RD*8] | mov LFUNC:KBASE, [BASE-8] | mov PROTO:KBASE, LFUNC:KBASE->pt | mov KBASE, PROTO:KBASE->k | jmp <4 | |7: // Tailcall from a vararg function. | jnp <1 // Vararg frame below? | and PC, -8 | sub BASE, PC // Need to relocate BASE/KBASE down. | mov KBASE, BASE | mov PC, [BASE-4] | jmp <1 break; case BC_ITERC: | ins_A // RA = base, (RB = nresults+1,) RC = nargs+1 (2+1) | lea RA, [BASE+RA*8+8] // fb = base+1 | mov RB, [RA-24] // Copy state. fb[0] = fb[-3]. | mov RC, [RA-20] | mov [RA], RB | mov [RA+4], RC | mov RB, [RA-16] // Copy control var. fb[1] = fb[-2]. | mov RC, [RA-12] | mov [RA+8], RB | mov [RA+12], RC | mov LFUNC:RB, [RA-32] // Copy callable. fb[-1] = fb[-4] | mov RC, [RA-28] | mov [RA-8], LFUNC:RB | mov [RA-4], RC | cmp RC, LJ_TFUNC // Handle like a regular 2-arg call. | mov NARGS:RC, 3 | jne ->vmeta_call | jmp aword LFUNC:RB->gate break; case BC_VARG: | ins_AB_ // RA = base, RB = nresults+1, (RC = 1) | mov LFUNC:RC, [BASE-8] | lea RA, [BASE+RA*8] | mov PROTO:RC, LFUNC:RC->pt | movzx RC, byte PROTO:RC->numparams | mov ARG3, KBASE // Need one more free register. | lea KBASE, [BASE+RC*8+(8+FRAME_VARG)] | sub KBASE, [BASE-4] | // Note: KBASE may now be even _above_ BASE if nargs was < numparams. | test RB, RB | jz >5 // Copy all varargs? | lea RB, [RA+RB*8-8] | cmp KBASE, BASE // No vararg slots? | jnb >2 |1: // Copy vararg slots to destination slots. | mov RC, [KBASE-8] | mov [RA], RC | mov RC, [KBASE-4] | add KBASE, 8 | mov [RA+4], RC | add RA, 8 | cmp RA, RB // All destination slots filled? | jnb >3 | cmp KBASE, BASE // No more vararg slots? | jb <1 |2: // Fill up remainder with nil. | mov dword [RA+4], LJ_TNIL | add RA, 8 | cmp RA, RB | jb <2 |3: | mov KBASE, ARG3 | ins_next | |5: // Copy all varargs. | mov NRESULTS, 1 // NRESULTS = 0+1 | mov RC, BASE | sub RC, KBASE | jbe <3 // No vararg slots? | mov RB, RC | shr RB, 3 | mov ARG2, RB // Store this for stack growth below. | add RB, 1 | mov NRESULTS, RB // NRESULTS = #varargs+1 | mov L:RB, SAVE_L | add RC, RA | cmp RC, L:RB->maxstack | ja >7 // Need to grow stack? |6: // Copy all vararg slots. | mov RC, [KBASE-8] | mov [RA], RC | mov RC, [KBASE-4] | add KBASE, 8 | mov [RA+4], RC | add RA, 8 | cmp KBASE, BASE // No more vararg slots? | jb <6 | jmp <3 | |7: // Grow stack for varargs. | mov L:RB->base, BASE | mov L:RB->top, RA | mov SAVE_PC, PC | sub KBASE, BASE // Need delta, because BASE may change. | mov ARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->base | mov RA, L:RB->top | add KBASE, BASE | jmp <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | ins_AD // RA = results, RD = extra_nresults | add RD, NRESULTS // NRESULTS >=1, so RD >=1. | // Fall through. Assumes BC_RET follows and ins_AD is a no-op. break; case BC_RET: case BC_RET0: case BC_RET1: | ins_AD // RA = results, RD = nresults+1 if (op != BC_RET0) { | shl RA, 3 } |1: | mov PC, [BASE-4] | mov NRESULTS, RD // Save nresults+1. | test PC, FRAME_TYPE // Check frame type marker. | jnz >7 // Not returning to a fixarg Lua func? switch (op) { case BC_RET: |->BC_RET_Z: | mov KBASE, BASE // Use KBASE for result move. | sub RD, 1 | jz >3 |2: | mov RB, [KBASE+RA] // Move results down. | mov [KBASE-8], RB | mov RB, [KBASE+RA+4] | mov [KBASE-4], RB | add KBASE, 8 | sub RD, 1 | jnz <2 |3: | mov RD, NRESULTS // Note: NRESULTS may be >255. | movzx RB, PC_RB // So cannot compare with RDL! |5: | cmp RB, RD // More results expected? | ja >6 break; case BC_RET1: | mov RB, [BASE+RA+4] | mov [BASE-4], RB | mov RB, [BASE+RA] | mov [BASE-8], RB /* fallthrough */ case BC_RET0: |5: | cmp PC_RB, RDL // More results expected? | ja >6 default: break; } | movzx RA, PC_RA | not RA // Note: ~RA = -(RA+1) | lea BASE, [BASE+RA*8] // base = base - (RA+1)*8 | mov LFUNC:KBASE, [BASE-8] | mov PROTO:KBASE, LFUNC:KBASE->pt | mov KBASE, PROTO:KBASE->k | ins_next | |6: // Fill up results with nil. if (op == BC_RET) { | mov dword [KBASE-4], LJ_TNIL // Note: relies on shifted base. | add KBASE, 8 } else { | mov dword [BASE+RD*8-12], LJ_TNIL } | add RD, 1 | jmp <5 | |7: // Non-standard return case. | jnp ->vm_return | // Return from vararg function: relocate BASE down and RA up. | and PC, -8 | sub BASE, PC if (op != BC_RET0) { | add RA, PC } | jmp <1 break; /* -- Loops and branches ------------------------------------------------ */ |.define FOR_IDX, qword [RA]; .define FOR_TIDX, dword [RA+4] |.define FOR_STOP, qword [RA+8]; .define FOR_TSTOP, dword [RA+12] |.define FOR_STEP, qword [RA+16]; .define FOR_TSTEP, dword [RA+20] |.define FOR_EXT, qword [RA+24]; .define FOR_TEXT, dword [RA+28] case BC_FORL: #if LJ_HASJIT | hotloop RB #endif | // Fall through. Assumes BC_IFORL follows and ins_AJ is a no-op. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: vk = (op == BC_IFORL || op == BC_JFORL); | ins_AJ // RA = base, RD = target (after end of loop or start of loop) | lea RA, [BASE+RA*8] if (!vk) { | cmp FOR_TIDX, LJ_TISNUM; ja ->vmeta_for // Type checks | cmp FOR_TSTOP, LJ_TISNUM; ja ->vmeta_for } | mov RB, FOR_TSTEP // Load type/hiword of for step. if (!vk) { | cmp RB, LJ_TISNUM; ja ->vmeta_for } | fld FOR_STOP | fld FOR_IDX if (vk) { | fadd FOR_STEP // nidx = idx + step | fst FOR_IDX } | fst FOR_EXT | test RB, RB // Swap lim/(n)idx if step non-negative. | js >1 | fxch |1: | fcomparepp // eax (RD) modified if !cmov. if (!cmov) { | movzx RD, PC_RD // Need to reload RD. } if (op == BC_FORI) { | jnb >2 | branchPC RD } else if (op == BC_JFORI) { | branchPC RD | movzx RD, PC_RD | jnb =>BC_JLOOP } else if (op == BC_IFORL) { | jb >2 | branchPC RD } else { | jnb =>BC_JLOOP } |2: | ins_next break; case BC_ITERL: #if LJ_HASJIT | hotloop RB #endif | // Fall through. Assumes BC_IITERL follows and ins_AJ is a no-op. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | ins_AJ // RA = base, RD = target | lea RA, [BASE+RA*8] | mov RB, [RA+4] | cmp RB, LJ_TNIL; je >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | mov [RA-4], RB | mov RB, [RA] | mov [RA-8], RB | jmp =>BC_JLOOP } else { | branchPC RD // Otherwise save control var + branch. | mov RD, [RA] | mov [RA-4], RB | mov [RA-8], RD } |1: | ins_next break; case BC_LOOP: | ins_A // RA = base, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. #if LJ_HASJIT | hotloop RB #endif | // Fall through. Assumes BC_ILOOP follows and ins_A is a no-op. break; case BC_ILOOP: | ins_A // RA = base, RD = target (loop extent) | ins_next break; case BC_JLOOP: #if LJ_HASJIT | ins_AD // RA = base (ignored), RD = traceno | mov RA, [DISPATCH+DISPATCH_J(trace)] | mov TRACE:RD, [RA+RD*4] | mov RD, TRACE:RD->mcode | mov L:RB, SAVE_L | mov [DISPATCH+DISPATCH_GL(jit_base)], BASE | mov [DISPATCH+DISPATCH_GL(jit_L)], L:RB | jmp RD #endif break; case BC_JMP: | ins_AJ // RA = unused, RD = target | branchPC RD | ins_next break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; int cmov = 1; #ifdef LUAJIT_CPU_NOCMOV cmov = 0; #endif dasm_growpc(Dst, BC__MAX); build_subroutines(ctx, cmov); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op, cmov); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 0x8\n" "\t.byte 0xc\n\t.uleb128 0x4\n\t.uleb128 0x4\n" "\t.byte 0x88\n\t.uleb128 0x1\n" "\t.align 4\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 0x30\n" /* def_cfa_offset */ "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */ "\t.align 4\n" ".LEFDE0:\n\n", (int)ctx->codesz); fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 0x8\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 0x4\n\t.uleb128 0x4\n" "\t.byte 0x88\n\t.uleb128 0x1\n" "\t.align 4\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .LASFDE1-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 0x30\n" /* def_cfa_offset */ "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */ "\t.align 4\n" ".LEFDE1:\n\n", (int)ctx->codesz); break; case BUILD_machasm: fprintf(ctx->fp, "\t.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support\n"); fprintf(ctx->fp, "EH_frame1:\n" "\t.set L$set$0,LECIE1-LSCIE1\n" "\t.long L$set$0\n" "LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.ascii \"zPR\\0\"\n" "\t.byte 0x1\n" "\t.byte 128-4\n" "\t.byte 0x8\n" "\t.byte 6\n" /* augmentation length */ "\t.byte 0x9b\n" /* indirect|pcrel|sdata4 */ "\t.long L_lj_err_unwind_dwarf$non_lazy_ptr-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte 0x5\n\t.byte 0x4\n" /* esp=5 on 32 bit MACH-O. */ "\t.byte 0x88\n\t.byte 0x1\n" "\t.align 2\n" "LECIE1:\n\n"); fprintf(ctx->fp, "_lj_vm_asm_begin.eh:\n" "LSFDE1:\n" "\t.set L$set$1,LEFDE1-LASFDE1\n" "\t.long L$set$1\n" "LASFDE1:\n" "\t.long LASFDE1-EH_frame1\n" "\t.long _lj_vm_asm_begin-.\n" "\t.long %d\n" "\t.byte 0\n" /* augmentation length */ "\t.byte 0xe\n\t.byte 0x30\n" /* def_cfa_offset */ "\t.byte 0x84\n\t.byte 0x2\n" /* offset ebp (4 for MACH-O)*/ "\t.byte 0x87\n\t.byte 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.byte 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.byte 0x5\n" /* offset ebx */ "\t.align 2\n" "LEFDE1:\n\n", (int)ctx->codesz); fprintf(ctx->fp, "\t.non_lazy_symbol_pointer\n" "L_lj_err_unwind_dwarf$non_lazy_ptr:\n" ".indirect_symbol _lj_err_unwind_dwarf\n" ".long 0\n"); break; default: /* Difficult for other modes. */ break; } }