mirror of
https://github.com/LuaJIT/LuaJIT.git
synced 2025-02-07 23:24:09 +00:00
Add IR_KINT64.
This commit is contained in:
parent
b1fb71fb98
commit
5a13fa69d9
65
src/lj_asm.c
65
src/lj_asm.c
@ -384,15 +384,23 @@ static void emit_loadi(ASMState *as, Reg r, int32_t i)
|
||||
emit_loadi(as, (r), ptr2addr((addr)))
|
||||
|
||||
#if LJ_64
|
||||
/* mov r, imm64 */
|
||||
static void emit_loadu64(ASMState *as, Reg r, uint64_t i)
|
||||
/* mov r, imm64 or shorter 32 bit extended load. */
|
||||
static void emit_loadu64(ASMState *as, Reg r, uint64_t u64)
|
||||
{
|
||||
MCode *p = as->mcp;
|
||||
*(uint64_t *)(p-8) = i;
|
||||
p[-9] = (MCode)(XI_MOVri+(r&7));
|
||||
p[-10] = 0x48 + ((r>>3)&1);
|
||||
p -= 10;
|
||||
as->mcp = p;
|
||||
if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */
|
||||
emit_loadi(as, r, (int32_t)u64);
|
||||
} else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */
|
||||
MCode *p = as->mcp;
|
||||
*(int32_t *)(p-4) = (int32_t)u64;
|
||||
as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4);
|
||||
} else { /* Full-size 64 bit load. */
|
||||
MCode *p = as->mcp;
|
||||
*(uint64_t *)(p-8) = u64;
|
||||
p[-9] = (MCode)(XI_MOVri+(r&7));
|
||||
p[-10] = 0x48 + ((r>>3)&1);
|
||||
p -= 10;
|
||||
as->mcp = p;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -618,6 +626,10 @@ static Reg ra_rematk(ASMState *as, IRIns *ir)
|
||||
} else if (ir->o == IR_KPRI) { /* REF_NIL stores ASMREF_L register. */
|
||||
lua_assert(irt_isnil(ir->t));
|
||||
emit_getgl(as, r, jit_L);
|
||||
#if LJ_64 /* NYI: 32 bit register pairs. */
|
||||
} else if (ir->o == IR_KINT64) {
|
||||
emit_loadu64(as, r, ir_kint64(ir)->u64);
|
||||
#endif
|
||||
} else {
|
||||
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
|
||||
ir->o == IR_KPTR || ir->o == IR_KNULL);
|
||||
@ -909,6 +921,11 @@ static void ra_left(ASMState *as, Reg dest, IRRef lref)
|
||||
emit_loadn(as, dest, tv);
|
||||
return;
|
||||
}
|
||||
#if LJ_64 /* NYI: 32 bit register pairs. */
|
||||
} else if (ir->o == IR_KINT64) {
|
||||
emit_loadu64(as, dest, ir_kint64(ir)->u64);
|
||||
return;
|
||||
#endif
|
||||
} else {
|
||||
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
|
||||
ir->o == IR_KPTR || ir->o == IR_KNULL);
|
||||
@ -1343,7 +1360,8 @@ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
|
||||
lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */
|
||||
emit_call(as, ci->func);
|
||||
for (n = 0; n < nargs; n++) { /* Setup args. */
|
||||
IRIns *ir = IR(args[n]);
|
||||
IRRef ref = args[n];
|
||||
IRIns *ir = IR(ref);
|
||||
Reg r;
|
||||
#if LJ_64 && LJ_ABI_WIN
|
||||
/* Windows/x64 argument registers are strictly positional. */
|
||||
@ -1364,38 +1382,42 @@ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
|
||||
}
|
||||
#endif
|
||||
if (r) { /* Argument is in a register. */
|
||||
if (r < RID_MAX_GPR && args[n] < ASMREF_TMP1) {
|
||||
emit_loadi(as, r, ir->i);
|
||||
if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
|
||||
#if LJ_64 /* NYI: 32 bit register pairs. */
|
||||
if (ir->o == IR_KINT64)
|
||||
emit_loadu64(as, r, ir_kint64(ir)->u64);
|
||||
else
|
||||
#endif
|
||||
emit_loadi(as, r, ir->i);
|
||||
} else {
|
||||
lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
|
||||
if (ra_hasreg(ir->r)) {
|
||||
ra_noweak(as, ir->r);
|
||||
ra_movrr(as, ir, r, ir->r);
|
||||
} else {
|
||||
ra_allocref(as, args[n], RID2RSET(r));
|
||||
ra_allocref(as, ref, RID2RSET(r));
|
||||
}
|
||||
}
|
||||
} else if (irt_isnum(ir->t)) { /* FP argument is on stack. */
|
||||
if (!LJ_64 && (ofs & 4) && irref_isk(args[n])) {
|
||||
if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
|
||||
/* Split stores for unaligned FP consts. */
|
||||
emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
|
||||
emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
|
||||
} else {
|
||||
if ((allow & RSET_FPR) == RSET_EMPTY)
|
||||
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
||||
r = ra_alloc1(as, args[n], allow & RSET_FPR);
|
||||
r = ra_alloc1(as, ref, allow & RSET_FPR);
|
||||
allow &= ~RID2RSET(r);
|
||||
emit_rmro(as, XO_MOVSDto, r, RID_ESP, ofs);
|
||||
}
|
||||
ofs += 8;
|
||||
} else { /* Non-FP argument is on stack. */
|
||||
/* NYI: no widening for 64 bit parameters on x64. */
|
||||
if (args[n] < ASMREF_TMP1) {
|
||||
if (LJ_32 && ref < ASMREF_TMP1) {
|
||||
emit_movmroi(as, RID_ESP, ofs, ir->i);
|
||||
} else {
|
||||
if ((allow & RSET_GPR) == RSET_EMPTY)
|
||||
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
|
||||
r = ra_alloc1(as, args[n], allow & RSET_GPR);
|
||||
r = ra_alloc1(as, ref, allow & RSET_GPR);
|
||||
allow &= ~RID2RSET(r);
|
||||
emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs);
|
||||
}
|
||||
@ -1936,8 +1958,9 @@ static void asm_fstore(ASMState *as, IRIns *ir)
|
||||
/* The IRT_I16/IRT_U16 stores should never be simplified for constant
|
||||
** values since mov word [mem], imm16 has a length-changing prefix.
|
||||
*/
|
||||
lua_assert(!(irref_isk(ir->op2) && irt_is64(ir->t))); /* NYI: KINT64. */
|
||||
if (!irref_isk(ir->op2) || irt_isi16(ir->t) || irt_isu16(ir->t)) {
|
||||
if (!irref_isk(ir->op2) || irt_isi16(ir->t) || irt_isu16(ir->t) ||
|
||||
(LJ_64 && irt_is64(ir->t) &&
|
||||
!checki32((int64_t)ir_k64(IR(ir->op2))->u64))) {
|
||||
RegSet allow8 = (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
|
||||
src = ra_alloc1(as, ir->op2, allow8);
|
||||
rset_clear(allow, src);
|
||||
@ -2496,7 +2519,7 @@ static void asm_add(ASMState *as, IRIns *ir)
|
||||
if (irt_isnum(ir->t))
|
||||
asm_fparith(as, ir, XO_ADDSD);
|
||||
else if ((as->flags & JIT_F_LEA_AGU) || as->testmcp == as->mcp ||
|
||||
!asm_lea(as, ir))
|
||||
irt_is64(ir->t) || !asm_lea(as, ir))
|
||||
asm_intarith(as, ir, XOg_ADD);
|
||||
}
|
||||
|
||||
@ -2615,7 +2638,7 @@ static void asm_comp_(ASMState *as, IRIns *ir, int cc)
|
||||
else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */
|
||||
lref = ir->op2; rref = ir->op1;
|
||||
}
|
||||
if (irref_isk(rref)) {
|
||||
if (irref_isk(rref) && IR(rref)->o != IR_KINT64) {
|
||||
IRIns *irl = IR(lref);
|
||||
int32_t imm = IR(rref)->i;
|
||||
/* Check wether we can use test ins. Not for unsigned, since CF=0. */
|
||||
|
@ -62,7 +62,7 @@ typedef unsigned __int32 uintptr_t;
|
||||
#define LJ_MIN_SBUF 32 /* Min. string buffer length. */
|
||||
#define LJ_MIN_VECSZ 8 /* Min. size for growable vectors. */
|
||||
#define LJ_MIN_IRSZ 32 /* Min. size for growable IR. */
|
||||
#define LJ_MIN_KNUMSZ 16 /* Min. size for chained KNUM array. */
|
||||
#define LJ_MIN_K64SZ 16 /* Min. size for chained K64Array. */
|
||||
|
||||
/* JIT compiler limits. */
|
||||
#define LJ_MAX_JSLOTS 250 /* Max. # of stack slots for a trace. */
|
||||
@ -90,6 +90,7 @@ typedef unsigned __int32 uintptr_t;
|
||||
#define checki16(x) ((x) == (int32_t)(int16_t)(x))
|
||||
#define checku16(x) ((x) == (int32_t)(uint16_t)(x))
|
||||
#define checki32(x) ((x) == (int32_t)(x))
|
||||
#define checku32(x) ((x) == (uint32_t)(x))
|
||||
#define checkptr32(x) ((uintptr_t)(x) == (uint32_t)(uintptr_t)(x))
|
||||
|
||||
/* Every half-decent C compiler transforms this into a rotate instruction. */
|
||||
|
94
src/lj_ir.c
94
src/lj_ir.c
@ -167,88 +167,95 @@ found:
|
||||
return TREF(ref, IRT_INT);
|
||||
}
|
||||
|
||||
/* The MRef inside the KNUM IR instruction holds the address of the constant
|
||||
** (an aligned double or a special 64 bit pattern). The KNUM constants
|
||||
** themselves are stored in a chained array and shared across traces.
|
||||
/* The MRef inside the KNUM/KINT64 IR instructions holds the address of the
|
||||
** 64 bit constant. The constants themselves are stored in a chained array
|
||||
** and shared across traces.
|
||||
**
|
||||
** Rationale for choosing this data structure:
|
||||
** - The address of the constants is embedded in the generated machine code
|
||||
** and must never move. A resizable array or hash table wouldn't work.
|
||||
** - Most apps need very few non-integer constants (less than a dozen).
|
||||
** - Most apps need very few non-32 bit integer constants (less than a dozen).
|
||||
** - Linear search is hard to beat in terms of speed and low complexity.
|
||||
*/
|
||||
typedef struct KNumArray {
|
||||
typedef struct K64Array {
|
||||
MRef next; /* Pointer to next list. */
|
||||
MSize numk; /* Number of used elements in this array. */
|
||||
TValue k[LJ_MIN_KNUMSZ]; /* Array of constants. */
|
||||
} KNumArray;
|
||||
TValue k[LJ_MIN_K64SZ]; /* Array of constants. */
|
||||
} K64Array;
|
||||
|
||||
/* Free all chained arrays. */
|
||||
void lj_ir_knum_freeall(jit_State *J)
|
||||
void lj_ir_k64_freeall(jit_State *J)
|
||||
{
|
||||
KNumArray *kn;
|
||||
for (kn = mref(J->knum, KNumArray); kn; ) {
|
||||
KNumArray *next = mref(kn->next, KNumArray);
|
||||
lj_mem_free(J2G(J), kn, sizeof(KNumArray));
|
||||
kn = next;
|
||||
K64Array *k;
|
||||
for (k = mref(J->k64, K64Array); k; ) {
|
||||
K64Array *next = mref(k->next, K64Array);
|
||||
lj_mem_free(J2G(J), k, sizeof(K64Array));
|
||||
k = next;
|
||||
}
|
||||
}
|
||||
|
||||
/* Find KNUM constant in chained array or add it. */
|
||||
static cTValue *ir_knum_find(jit_State *J, uint64_t nn)
|
||||
/* Find 64 bit constant in chained array or add it. */
|
||||
static cTValue *ir_k64_find(jit_State *J, uint64_t u64)
|
||||
{
|
||||
KNumArray *kn, *knp = NULL;
|
||||
K64Array *k, *kp = NULL;
|
||||
TValue *ntv;
|
||||
MSize idx;
|
||||
/* Search for the constant in the whole chain of arrays. */
|
||||
for (kn = mref(J->knum, KNumArray); kn; kn = mref(kn->next, KNumArray)) {
|
||||
knp = kn; /* Remember previous element in list. */
|
||||
for (idx = 0; idx < kn->numk; idx++) { /* Search one array. */
|
||||
TValue *tv = &kn->k[idx];
|
||||
if (tv->u64 == nn) /* Needed for +-0/NaN/absmask. */
|
||||
for (k = mref(J->k64, K64Array); k; k = mref(k->next, K64Array)) {
|
||||
kp = k; /* Remember previous element in list. */
|
||||
for (idx = 0; idx < k->numk; idx++) { /* Search one array. */
|
||||
TValue *tv = &k->k[idx];
|
||||
if (tv->u64 == u64) /* Needed for +-0/NaN/absmask. */
|
||||
return tv;
|
||||
}
|
||||
}
|
||||
/* Constant was not found, need to add it. */
|
||||
if (!(knp && knp->numk < LJ_MIN_KNUMSZ)) { /* Allocate a new array. */
|
||||
KNumArray *nkn = lj_mem_newt(J->L, sizeof(KNumArray), KNumArray);
|
||||
setmref(nkn->next, NULL);
|
||||
nkn->numk = 0;
|
||||
if (knp)
|
||||
setmref(knp->next, nkn); /* Chain to the end of the list. */
|
||||
if (!(kp && kp->numk < LJ_MIN_K64SZ)) { /* Allocate a new array. */
|
||||
K64Array *kn = lj_mem_newt(J->L, sizeof(K64Array), K64Array);
|
||||
setmref(kn->next, NULL);
|
||||
kn->numk = 0;
|
||||
if (kp)
|
||||
setmref(kp->next, kn); /* Chain to the end of the list. */
|
||||
else
|
||||
setmref(J->knum, nkn); /* Link first array. */
|
||||
knp = nkn;
|
||||
setmref(J->k64, kn); /* Link first array. */
|
||||
kp = kn;
|
||||
}
|
||||
ntv = &knp->k[knp->numk++]; /* Add to current array. */
|
||||
ntv->u64 = nn;
|
||||
ntv = &kp->k[kp->numk++]; /* Add to current array. */
|
||||
ntv->u64 = u64;
|
||||
return ntv;
|
||||
}
|
||||
|
||||
/* Intern FP constant, given by its address. */
|
||||
TRef lj_ir_knum_addr(jit_State *J, cTValue *tv)
|
||||
/* Intern 64 bit constant, given by its address. */
|
||||
TRef lj_ir_k64(jit_State *J, IROp op, cTValue *tv)
|
||||
{
|
||||
IRIns *ir, *cir = J->cur.ir;
|
||||
IRRef ref;
|
||||
for (ref = J->chain[IR_KNUM]; ref; ref = cir[ref].prev)
|
||||
if (ir_knum(&cir[ref]) == tv)
|
||||
IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64;
|
||||
for (ref = J->chain[op]; ref; ref = cir[ref].prev)
|
||||
if (ir_k64(&cir[ref]) == tv)
|
||||
goto found;
|
||||
ref = ir_nextk(J);
|
||||
ir = IR(ref);
|
||||
lua_assert(checkptr32(tv));
|
||||
setmref(ir->ptr, tv);
|
||||
ir->t.irt = IRT_NUM;
|
||||
ir->o = IR_KNUM;
|
||||
ir->prev = J->chain[IR_KNUM];
|
||||
J->chain[IR_KNUM] = (IRRef1)ref;
|
||||
ir->t.irt = t;
|
||||
ir->o = op;
|
||||
ir->prev = J->chain[op];
|
||||
J->chain[op] = (IRRef1)ref;
|
||||
found:
|
||||
return TREF(ref, IRT_NUM);
|
||||
return TREF(ref, t);
|
||||
}
|
||||
|
||||
/* Intern FP constant, given by its 64 bit pattern. */
|
||||
TRef lj_ir_knum_nn(jit_State *J, uint64_t nn)
|
||||
TRef lj_ir_knum_u64(jit_State *J, uint64_t u64)
|
||||
{
|
||||
return lj_ir_knum_addr(J, ir_knum_find(J, nn));
|
||||
return lj_ir_k64(J, IR_KNUM, ir_k64_find(J, u64));
|
||||
}
|
||||
|
||||
/* Intern 64 bit integer constant. */
|
||||
TRef lj_ir_kint64(jit_State *J, uint64_t u64)
|
||||
{
|
||||
return lj_ir_k64(J, IR_KINT64, ir_k64_find(J, u64));
|
||||
}
|
||||
|
||||
/* Check whether a number is int and return it. -0 is NOT considered an int. */
|
||||
@ -373,6 +380,9 @@ void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir)
|
||||
} else if (irt_isnum(ir->t)) {
|
||||
lua_assert(ir->o == IR_KNUM);
|
||||
setnumV(tv, ir_knum(ir)->n);
|
||||
} else if (irt_is64(ir->t)) {
|
||||
lua_assert(ir->o == IR_KINT64);
|
||||
setnumV(tv, (int64_t)ir_kint64(ir)->u64); /* NYI: use FFI int64_t. */
|
||||
} else if (irt_ispri(ir->t)) {
|
||||
lua_assert(ir->o == IR_KPRI);
|
||||
setitype(tv, irt_toitype(ir->t));
|
||||
|
40
src/lj_ir.h
40
src/lj_ir.h
@ -12,6 +12,24 @@
|
||||
|
||||
/* IR instruction definition. Order matters, see below. */
|
||||
#define IRDEF(_) \
|
||||
/* Guarded assertions. */ \
|
||||
/* Must be properly aligned to flip opposites (^1) and (un)ordered (^4). */ \
|
||||
_(LT, N , ref, ref) \
|
||||
_(GE, N , ref, ref) \
|
||||
_(LE, N , ref, ref) \
|
||||
_(GT, N , ref, ref) \
|
||||
\
|
||||
_(ULT, N , ref, ref) \
|
||||
_(UGE, N , ref, ref) \
|
||||
_(ULE, N , ref, ref) \
|
||||
_(UGT, N , ref, ref) \
|
||||
\
|
||||
_(EQ, C , ref, ref) \
|
||||
_(NE, C , ref, ref) \
|
||||
\
|
||||
_(ABC, N , ref, ref) \
|
||||
_(RETF, S , ref, ref) \
|
||||
\
|
||||
/* Miscellaneous ops. */ \
|
||||
_(NOP, N , ___, ___) \
|
||||
_(BASE, N , lit, lit) \
|
||||
@ -26,26 +44,9 @@
|
||||
_(KPTR, N , cst, ___) \
|
||||
_(KNULL, N , cst, ___) \
|
||||
_(KNUM, N , cst, ___) \
|
||||
_(KINT64, N , cst, ___) \
|
||||
_(KSLOT, N , ref, lit) \
|
||||
\
|
||||
/* Guarded assertions. */ \
|
||||
/* Must be properly aligned to flip opposites (^1) and (un)ordered (^4). */ \
|
||||
_(EQ, C , ref, ref) \
|
||||
_(NE, C , ref, ref) \
|
||||
\
|
||||
_(ABC, N , ref, ref) \
|
||||
_(RETF, S , ref, ref) \
|
||||
\
|
||||
_(LT, N , ref, ref) \
|
||||
_(GE, N , ref, ref) \
|
||||
_(LE, N , ref, ref) \
|
||||
_(GT, N , ref, ref) \
|
||||
\
|
||||
_(ULT, N , ref, ref) \
|
||||
_(UGE, N , ref, ref) \
|
||||
_(ULE, N , ref, ref) \
|
||||
_(UGT, N , ref, ref) \
|
||||
\
|
||||
/* Bit ops. */ \
|
||||
_(BNOT, N , ref, ___) \
|
||||
_(BSWAP, N , ref, ___) \
|
||||
@ -536,6 +537,9 @@ typedef union IRIns {
|
||||
#define ir_ktab(ir) (gco2tab(ir_kgc((ir))))
|
||||
#define ir_kfunc(ir) (gco2func(ir_kgc((ir))))
|
||||
#define ir_knum(ir) check_exp((ir)->o == IR_KNUM, mref((ir)->ptr, cTValue))
|
||||
#define ir_kint64(ir) check_exp((ir)->o == IR_KINT64, mref((ir)->ptr,cTValue))
|
||||
#define ir_k64(ir) \
|
||||
check_exp((ir)->o == IR_KNUM || (ir)->o == IR_KINT64, mref((ir)->ptr,cTValue))
|
||||
#define ir_kptr(ir) check_exp((ir)->o == IR_KPTR, mref((ir)->ptr, void))
|
||||
|
||||
LJ_STATIC_ASSERT((int)IRT_GUARD == (int)IRM_W);
|
||||
|
@ -39,10 +39,11 @@ static LJ_AINLINE IRRef lj_ir_nextins(jit_State *J)
|
||||
|
||||
/* Interning of constants. */
|
||||
LJ_FUNC TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k);
|
||||
LJ_FUNC void lj_ir_knum_freeall(jit_State *J);
|
||||
LJ_FUNC TRef lj_ir_knum_addr(jit_State *J, cTValue *tv);
|
||||
LJ_FUNC TRef lj_ir_knum_nn(jit_State *J, uint64_t nn);
|
||||
LJ_FUNC void lj_ir_k64_freeall(jit_State *J);
|
||||
LJ_FUNC TRef lj_ir_k64(jit_State *J, IROp op, cTValue *tv);
|
||||
LJ_FUNC TRef lj_ir_knum_u64(jit_State *J, uint64_t u64);
|
||||
LJ_FUNC TRef lj_ir_knumint(jit_State *J, lua_Number n);
|
||||
LJ_FUNC TRef lj_ir_kint64(jit_State *J, uint64_t u64);
|
||||
LJ_FUNC TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t);
|
||||
LJ_FUNC TRef lj_ir_kptr(jit_State *J, void *ptr);
|
||||
LJ_FUNC TRef lj_ir_knull(jit_State *J, IRType t);
|
||||
@ -52,7 +53,7 @@ static LJ_AINLINE TRef lj_ir_knum(jit_State *J, lua_Number n)
|
||||
{
|
||||
TValue tv;
|
||||
tv.n = n;
|
||||
return lj_ir_knum_nn(J, tv.u64);
|
||||
return lj_ir_knum_u64(J, tv.u64);
|
||||
}
|
||||
|
||||
#define lj_ir_kstr(J, str) lj_ir_kgc(J, obj2gco((str)), IRT_STR)
|
||||
@ -60,13 +61,13 @@ static LJ_AINLINE TRef lj_ir_knum(jit_State *J, lua_Number n)
|
||||
#define lj_ir_kfunc(J, func) lj_ir_kgc(J, obj2gco((func)), IRT_FUNC)
|
||||
|
||||
/* Special FP constants. */
|
||||
#define lj_ir_knum_zero(J) lj_ir_knum_nn(J, U64x(00000000,00000000))
|
||||
#define lj_ir_knum_one(J) lj_ir_knum_nn(J, U64x(3ff00000,00000000))
|
||||
#define lj_ir_knum_tobit(J) lj_ir_knum_nn(J, U64x(43380000,00000000))
|
||||
#define lj_ir_knum_zero(J) lj_ir_knum_u64(J, U64x(00000000,00000000))
|
||||
#define lj_ir_knum_one(J) lj_ir_knum_u64(J, U64x(3ff00000,00000000))
|
||||
#define lj_ir_knum_tobit(J) lj_ir_knum_u64(J, U64x(43380000,00000000))
|
||||
|
||||
/* Special 128 bit SIMD constants. */
|
||||
#define lj_ir_knum_abs(J) lj_ir_knum_addr(J, LJ_KSIMD(J, LJ_KSIMD_ABS))
|
||||
#define lj_ir_knum_neg(J) lj_ir_knum_addr(J, LJ_KSIMD(J, LJ_KSIMD_NEG))
|
||||
#define lj_ir_knum_abs(J) lj_ir_k64(J, IR_KNUM, LJ_KSIMD(J, LJ_KSIMD_ABS))
|
||||
#define lj_ir_knum_neg(J) lj_ir_k64(J, IR_KNUM, LJ_KSIMD(J, LJ_KSIMD_NEG))
|
||||
|
||||
/* Access to constants. */
|
||||
LJ_FUNC void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir);
|
||||
|
@ -271,7 +271,7 @@ typedef struct jit_State {
|
||||
int32_t framedepth; /* Current frame depth. */
|
||||
int32_t retdepth; /* Return frame depth (count of RETF). */
|
||||
|
||||
MRef knum; /* Pointer to chained array of KNUM constants. */
|
||||
MRef k64; /* Pointer to chained array of 64 bit constants. */
|
||||
TValue ksimd[LJ_KSIMD__MAX*2+1]; /* 16 byte aligned SIMD constants. */
|
||||
|
||||
IRIns *irbuf; /* Temp. IR instruction buffer. Biased with REF_BIAS. */
|
||||
|
@ -188,7 +188,7 @@ static TRef fwd_ahload(jit_State *J, IRRef xref)
|
||||
tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv);
|
||||
lua_assert(itype2irt(tv) == irt_type(fins->t));
|
||||
if (irt_isnum(fins->t))
|
||||
return lj_ir_knum_nn(J, tv->u64);
|
||||
return lj_ir_knum_u64(J, tv->u64);
|
||||
else
|
||||
return lj_ir_kstr(J, strV(tv));
|
||||
}
|
||||
|
@ -1863,7 +1863,8 @@ static void rec_setup_side(jit_State *J, GCtrace *T)
|
||||
case IR_KPRI: tr = TREF_PRI(irt_type(ir->t)); break;
|
||||
case IR_KINT: tr = lj_ir_kint(J, ir->i); break;
|
||||
case IR_KGC: tr = lj_ir_kgc(J, ir_kgc(ir), irt_t(ir->t)); break;
|
||||
case IR_KNUM: tr = lj_ir_knum_addr(J, ir_knum(ir)); break;
|
||||
case IR_KNUM: tr = lj_ir_k64(J, IR_KNUM, ir_knum(ir)); break;
|
||||
case IR_KINT64: tr = lj_ir_k64(J, IR_KINT64, ir_kint64(ir)); break;
|
||||
case IR_KPTR: tr = lj_ir_kptr(J, ir_kptr(ir)); break; /* Continuation. */
|
||||
/* Inherited SLOADs don't need a guard or type check. */
|
||||
case IR_SLOAD:
|
||||
|
@ -306,7 +306,7 @@ void lj_trace_freestate(global_State *g)
|
||||
}
|
||||
#endif
|
||||
lj_mcode_free(J);
|
||||
lj_ir_knum_freeall(J);
|
||||
lj_ir_k64_freeall(J);
|
||||
lj_mem_freevec(g, J->snapmapbuf, J->sizesnapmap, SnapEntry);
|
||||
lj_mem_freevec(g, J->snapbuf, J->sizesnap, SnapShot);
|
||||
lj_mem_freevec(g, J->irbuf + J->irbotlim, J->irtoplim - J->irbotlim, IRIns);
|
||||
|
Loading…
Reference in New Issue
Block a user